Find the mean, median, and mode for each set of data.

1. number of pages in each novel assigned for summer reading:
$224,272,374,478,960,394,404,308,480,624$

SOLUTION:

To find the mean divide the sum of all the pages divided by the total of novels.

```
mean
=}\frac{224+272+374+478+960+394+404+308+480+624}{10
= 4518
= 451.8 pages
```

To find the median. First arrange the page numbers in order.
$224,272,308,374,394,404,478,480,624,960$.
Because there is an even number of pages, find the mean of the middle two.

$$
\begin{aligned}
& \text { median } \\
& =\frac{394+404}{2} \\
& =\frac{792}{2} \\
& =399 \text { pages }
\end{aligned}
$$

The mode is the value that occurs the most often in the data set. There is not a repetitive number of pages, so there is no mode.
2. height in centimeters of bean plants at the end of an experiment:
$14.5,12,16,11,14,11,10.5,14,11.5,15,13.5$

SOLUTION:

To find the mean divide the sum of all the heights divided by the total of plants.

$$
\begin{aligned}
& \text { mean } \\
& =\frac{14.5+12+16+11+14+11+10.5+14+11.5+15+13.5}{11} \\
& =\frac{143}{11} \\
& =13 \mathrm{~cm}
\end{aligned}
$$

To find the median, arrange the heights in order. $10.5,11,11,11.5,12,13.5,14,14,14.5,15,16$.

Because there is an odd number of plants, the median is the middle number. So, the median is 13.5 cm
The mode is the value that occurs the most often in the data set. In this case, it is 11 cm and 14 cm .
3. number of text messages sent each day during the last two weeks:
$18,35,53,44,26,57,23,27,47,33,4,35,39,41$

SOLUTION:

To find the mean, divide the sum of number of all text messages divided by the 14 days.

```
mean
= 采+35+53+44+26+57+23+27+47+33+4+35+385+41
= 482
\approx34.4 text messages
```

To find the median, arrange the values in order. $4,18,23,26,27,33,35,35,38,47,41,44,53,57$.

Because there is an even number of values, find the mean of the middle two values.

$$
\begin{aligned}
& \text { median } \\
& =\frac{35+35}{2} \\
& =\frac{70}{2} \\
& =35 \text { text messages }
\end{aligned}
$$

The mode is the value that occurs the most often in the data set. In this case, it is 35 text messages.

State whether the data in sets A and B represent sample or population data. Then find the range, variance, and standard deviation of each set. Use the standard deviations to compare the variability between the data sets.
4.

Walt Times (min)						
Ride A				Ride B		
45	22	40	35	50	32	
48	11	51	31	35	45	
36	55	60	45	49	40	
32	24	37	43	37	45	

SOLUTION:

12 wait times for Ride A and Ride B are given.
For an amusement park ride, there must be more than 12 rides a day, so the data must be a sample.

The range is the difference between the greatest and least values in the set.
Ride A: $60-11=49$ min
Ride B: $50-31=19 \mathrm{~min}$
In order to find the variance and standard deviation, the mean is needed.

```
mean Ride A
= 45+22+40+48+11+51+36+55+60+32+24+37
= 461
\approx38.4 min
```

X	$X-\bar{X}$	$(X-\bar{X})^{2}$	
45	$45-38.4=6.6$	$6.6^{2}=43.56$	
22	$22-38.4=-16.4$	$(-16.4)^{2}=268.96$	
40	$40-38.4=1.6$	$1.6^{2}=2.56$	
48	$48-38.4=9.6$	$9.6^{2}=92.16$	
11	$11-38.4=-27.4$	$(-27.4)^{2}=750.76$	
51	$51-38.4=12.6$	$12.6^{2}=158.76$	
36	$36-38.4=-2.4$	$(-2.4)^{2}=5.76$	
55	$55-38.4=16.6$	$16.6^{2}=275.56$	
60	$60-38.4=21.6$	$21.6^{2}=466.56$	
32	$32-38.4=-6.4$	$(-6.4)^{2}=40.96$	
24	$24-38.4=-14.4$	$(-14.4)^{2}=207.36$	
37	$37-38.4=-1.4$	$(-1.4)^{2}=1.96$	
		$5 u m=2314.92$	

charity walk will have more than 9 walkers; the data given is for a sample.

Walk A: 47, $\approx 242.0, \approx 15.6$;
Walk B: $92, \approx 1115.4, \approx 33.4$;

The range is the difference between the greatest and least values in the set.
Walk A: 61-14 = 47 sponsors
Walk B: $100-8=92$ sponsors

In order to find the variance and standard deviation, the mean is needed.
mean Walk A

```
=}\frac{44+14+61+22+27+25+38+50+49}{9
= 330
\approx36.7 sponsors
```

X	$X-\bar{X}$	$(X-\bar{X})^{2}$
44	$44-36.7=7.3$	$7.3^{2}=53.29$
14	$14-36.7=-22.7$	$(-22.7)^{2}=515.29$
61	$61-36.7=24.3$	$24.3^{2}=590.49$
22	$22-36.7=-14.7$	$(-14.7)^{2}=216.09$
27	$27-36.7=-9.7$	$(-9.7)^{2}=94.09$
25	$25-36.7=-11.7$	$(-11.7)^{2}=136.89$
38	$38-36.7=1.3$	$1.3^{2}=1.69$
50	$50-36.7=13.3$	$13.3^{2}=176.89$
49	$49-36.7=12.3$	$12.3^{2}=151.29$
		$S u m=1936.01$

The variance of Walk A is $\frac{1936.01}{8}=242.0$ sponsors
The standard deviation of Walk A is $\sqrt{242.0}=15.6$ sponsors

```
mean Walk B
=}\frac{8+28+15+100+42+19+25+75+82}{9
= 394
\approx43.8 sponsors
```

X	$\chi-\bar{X}$	$(X-\bar{X})^{2}$
8	$35-43.8=-35.8$	$(-35.8)^{2}=1281.64$
28	$50-43.8=-15.8$	$(-15.8)^{2}=249.64$
15	$32-43.8=-28.8$	$(-28.8)^{2}=829.44$

$$
\begin{aligned}
& =\frac{243}{30} \\
& \approx 8.1 \text { days }
\end{aligned}
$$

$X \quad X-\bar{X} \quad(X-\bar{X})^{2}$

10	$10-8.1=1.9$	$(1.9)^{2}=3.61$
8	$8-8.1=-0.1$	$(-0.1)^{2}=0.01$
5	$5-8.1=-3.1$	$(-3.1)^{2}=9.61$
9	$9-8.1=0.9$	$(0.9)^{2}=0.81$
7	$7-8.1=-1.1$	$(-1.1)^{2}=1.21$
3	$3-8.1=-5.1$	$(-5.1)^{2}=26.01$
6	$6-8.1=-2.1$	$(-2.1)^{2}=4.41$
8	$8-8.1=-0.1$	$(-0.1)^{2}=0.01$
14	$14-8.1=5.9$	$(5.9)^{2}=34.81$
11	$11-8.1=2.9$	$(2.9)^{2}=8.41$

8	$8-8.1=-0.1$	$(-0.1)^{2}=0.01$
4	$4-8.1=-4.1$	$(-4.1)^{2}=16.81$
7	$7-8.1=-1.1$	$(-1.1)^{2}=1.21$
8	$8-8.1=-0.1$	$(-0.1)^{2}=0.01$
2	$2-8.1=-6.1$	$(-6.1)^{2}=37.21$

5	$5-8.1=-3.1$	$(-3.1)^{2}=9.61$
13	$13-8.1=4.9$	$(4.9)^{2}=24.01$

0	$0-8.1=-8.1$	$(-8.1)^{2}=65.61$
15	$15-8.1=6.9$	$(6.9)^{2}=47.61$
9	$9-8.1=0.9$	$(0.9)^{2}=0.81$
7	$7-8.1=-1.1$	$(-1.1)^{2}=1.21$

9	$9-8.1=0.9$	$(0.9)^{2}=0.81$
10	$10-8.1=1.9$	$(1.9)^{2}=3.61$
9	$9-8.1=0.9$	$(0.9)^{2}=0.81$
11	$11-8.1=2.9$	$(2.9)^{2}=8.41$
14	$14-8.1=5.9$	$(5.9)^{2}=34.81$
8	$8-8.1=-0.1$	$(-0.1)^{2}=0.01$
12	$12-8.1=3.9$	$(3.9)^{2}=15.21$
10	$10-8.1=1.9$	$(1.9)^{2}=3.61$
1	$1-8.1=-7.1$	$(-7.1)^{2}=50.41$

Sum $=410.7$

The variance of Class A is $\frac{410.7}{29}=14.2$ days

The standard deviation of Class A is $\sqrt{14.2}=3.8$ days
mean Class B
$=\frac{5+8+13+7+9+4+10+2+12+9+6+11+3+8+5+12+6+7+8+11+12+8+9+3+10+5+13+9+1+8}{30}$
$\frac{234}{30}$
≈ 7.8 days

X	$X-\bar{X}$	$(x-\bar{x})^{2}$
5	$5-7.8=-2.8$	$(-2.8)^{2}=7.84$
8	$8-7.8=0.2$	$(0.2)^{2}=0.04$
13	$13-7.8=5.2$	$(5.2)^{2}=27.04$
7	$7-7.8=-0.8$	$(-0.8)^{2}=0.64$
9	$9-7.8=1.2$	$(1.2)^{2}=1.44$
4	$4-7.8=-3.8$	$(-3.8)^{2}=14.44$
10	$10-7.8=2.2$	$(2.2)^{2}=4.84$
2	$2-7.8=-5.8$	$(-5.8)^{2}=33.64$
12	$12-7.8=4.2$	$(4.2)^{2}=17.64$
9	$9-7.8=1.2$	$(1.2)^{2}=1.44$
6	$6-7.8=-1.8$	$(-1.8)^{2}=3.24$
11	$11-7.8=3.2$	$(3.2)^{2}=10.24$
3	$3-7.8=-4.8$	$(-4.8)^{2}=23.04$
8	$8-7.8=0.2$	$(0.2)^{2}=0.04$
5	$5-7.8=-2.8$	$(-2.8)^{2}=7.84$
12	$12-7.8=4.2$	$(4.2)^{2}=17.64$
6	$6-7.8=-1.8$	$(-1.8)^{2}=3.24$
7	$7-7.8=-0.8$	$(-0.8)^{2}=0.64$
8	$8-7.8=0.2$	$(0.2)^{2}=0.04$
11	$11-7.8=3.2$	$(3.2)^{2}=10.24$
12	$12-7.8=4.2$	$(4.2)^{2}=17.64$
8	$8-7.8=0.2$	$(0.2)^{2}=0.04$
9	$9-7.8=1.2$	$(1.2)^{2}=1.44$
3	$3-7.8=-4.8$	$(-4.8)^{2}=23.04$
10	$10-7.8=2.2$	$(2.2)^{2}=4.84$
5	$5-7.8=-2.8$	$(-2.8)^{2}=7.84$
13	$13-7.8=5.2$	$(5.2)^{2}=27.04$
9	$9-7.8=1.2$	$(1.2)^{2}=1.44$
1	$1-7.8=-6.8$	$(-6.8)^{2}=46.24$
8	$8-7.8=0.2$	$(0.2)^{2}=0.04$
		Sum $=314.8$

The variance of Class B is $\frac{314.8}{29}=10.9$ days
The standard deviation of Class B is $\sqrt{10.9}=3.3$ days

Since the sample standard deviation of Class A is greater than that of Class B, there is more variability in the number of days that students missed during the school year for Class A than for Class B.

Find the minimum, lower quartile, median, upper quartile, and maximum of each data set. Then interpret this five-number summary.
7.

Number of Students								In Each Math Class at Central High
25	27	26	26	19	27	24		
23								
24	26	18	28	29	29	26		
19	28	25	24	20	22	22		
24	23	23	25	25	29	28		

SOLUTION:

Enter the data into L1.
Press STAT ENTER to display the 1-Var statistics.

```
1-Var Stats
Tn=30
    minX=18
    Q1=23
    Med=25
    Q3=27
    max8=29
```

The minimum is 18 .
The lower quartile is 23 .
The median is 25 .
The upper quartile is 27 .
The maximum is 29 .
There are 18 students in the smallest math class at Central High and 29 students in the largest class. 25% of the classes have less than 23 students, 50% of the classes have less than 25 students, and 75% of the classes have less than 27 students.

State Mean ACT Scores				
20.2	21.3	21.5	20.4	21.6
20.0	21.7	21.3	20.2	21.6
20.8	22.4	21.4	22.2	18.8
20.1	22.3	20.3	21.2	21.4
21.5	20.5	20.3	21.5	22.7
20.3	22.5	21.5	17.8	20.5
22.0	21.6	20.3	19.8	22.6
21.5	21.7	21.2	22.5	21.2
20.6	22.5	21.8	21.9	19.3
20.9	22.5	22.2	21.4	20.7
8.				
SOLUTION:				

Enter the data into L1.
Press STAT ENTER to display the 1-Var statistics.

The minimum is 17.8 .
The lower quartile is 20.4 .
The median is 21.4 .
The upper quartile is 21.8 .
The maximum is 22.7 .

The lowest mean score for a state is 17.8 and the highest mean score is 22.7 . 25% of the states have a mean score that is less than $20.4,50 \%$ of the states have a mean score that is less than 21.4 , and 75% of the states have a mean score that is less than 22.7.

Identify any outliers in each data set, and explain your reasoning. Then find the mean, median, mode, range, and standard deviation of the data set with and without the outlier. Describe the effect on each measure.
9. fuel efficiency in miles per gallon of 15 randomly selected automobiles:
$40,36,29,45,51,36,48,34,36,22,13,42,31,44,32$, 34

Enter the data into L1.
Keystrokes: STAT ENTER
Use the 1-Var statistics to identify Q_{1} and Q_{3}.

$\mathrm{Q}_{1}=31.5$ and $\mathrm{Q}_{3}=43 . \mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$ or $43-31.5$ $=11.5$.
Find and use the IQR to find the values beyond which any outlier would lie.
$\mathrm{Q}_{1}-1.5(\mathrm{IQR}) \quad$ and $\mathrm{Q}_{3}+1.5(\mathrm{IQR})$
$31.5-1.5(11.5) \quad 43+1.5(11.5)$
$14.25 \quad 60.25$
The only outlier on the low end is 13 . There are no outliers on the upper end.

With outlier:

Without outlier:

Data Set	Mean	Median	Mode	Range	Standard Deviation
with outlier	≈ 35.8	36	36	38	≈ 9.3
without outlier	≈ 37.3	36	36	29	≈ 7.5

Removing the outlier did not affect the median or mode. However, the removal did affect the mean, standard deviation, and range. The mean and standard deviation increased, and the range decreased.
10. number of posts to a certain blog each month during a particular year:
$25,23,21,27,29,19,10,21,20,18,26,23$

SOLUTION:

Enter the data into L1.
Keystrokes: STAT ENTER
Use the 1-Var statistics to identify Q_{1} and Q_{3}.

$\mathrm{Q}_{1}=19.5$ and $\mathrm{Q}_{3}=25.5 . \mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$ or $25.5-$ $19.5=6$.
Find and use the IQR to find the values beyond which any outlier would lie.
$\mathrm{Q}_{1}-1.5(\mathrm{IQR}) \quad$ and $\mathrm{Q}_{3}+1.5(\mathrm{IQR})$
$19.5-1.5(6) \quad 25.5+1.5(6)$
10.5
34.5

The interval beyond which any outliers would lie is $10.5<x<34.5$. Since $10<10.5$, it is an outlier. There are no outliers on the upper end.

With outlier:

Without outlier:

Data Set	Mean	Median	Mode	Range	Standard Deviation
with outlier	≈ 21.8	22	21	19	≈ 4.8
without outlier	≈ 22.9	23	21	11	≈ 3.3

Removing the outlier did not affect the mode. However, the removal did affect the mean, median, standard deviation, and range. The mean and median increased, and the standard deviation and range decreased.
11. CEREAL The weights, in ounces, of 20 randomly selected boxes of a certain brand of cereal are shown.
16.7, 16.8, 15.9, 16.1, 16.5, 16.6, 16.5, 15.9, 16.7, 16.5, $16.6,14.9,16.5,16.1,15.8,16.7,16.2,16.5,16.4,16.6$ a. Identify any outliers in the data set, and explain your reasoning.
b. If the outlier was removed and an additional cereal box that was 17.35 ounces was added, would this value be an outlier of the new data set? Explain.
c. What are some possible causes of outliers in this situation?

SOLUTION:

a. Enter the data into $\mathbf{L 1}$.

Keystrokes: STAT ENTER
Use the 1-Var statistics to identify Q_{1} and Q_{3}.

$\mathrm{Q}_{1}=16.1$ and $\mathrm{Q}_{3}=16.6$. $\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$ or $16.6-$ $16.1=0.5$.
Find and use the IQR to find the values beyond which any outlier would lie.

$\mathrm{Q}_{1}-1.5(\mathrm{IQR})$	and	$\mathrm{Q}_{3}+1.5(\mathrm{IQR})$
$16.1-1.5(0.5)$	$16.6+1.5(0.5)$	
15.35	17.35	

The interval beyond which any outliers would lie is $15.35<x<17.35$. Since $14.9<15.35$, it is an outlier.
 $-16.15=0.5$.
Find and use the IQR to find the values beyond which any outlier would lie.
$\mathrm{Q}_{1}-1.5(\mathrm{IQR})$ and $\mathrm{Q}_{3}+1.5(\mathrm{IQR})$
$16.15-1.5(0.5) \quad 16.65+1.5(0.5)$
$15.4 \quad 17.4$
The new interval beyond which any outliers would lie would be $15.4<x<17.4$. Since $17.4>17.35$, it would not be an outlier.
c. Outliers can be caused by data recording errors or manufacturing errors.

