Write a quadratic equation in standard form with the given root(s).

1. $-8,5$

ANSWER:
$x^{2}+3 x-40=0$
2. $\frac{3}{2}, \frac{1}{4}$

ANSWER:
$8 x^{2}-14 x+3=0$
3. $-\frac{2}{3}, \frac{5}{2}$

ANSWER:
$6 x^{2}-11 x-10=0$

Factor each polynomial.

4. $35 x^{2}-15 x$

ANSWER:
$5 x(7 x-3)$
5. $18 x^{2}-3 x+24 x-4$

ANSWER:
$(6 x-1)(3 x+4)$
6. $x^{2}-12 x+32$

ANSWER:
$(x-8)(x-4)$
7. $x^{2}-4 x-21$

ANSWER:
$(x-7)(x+3)$
8. $2 x^{2}+7 x-30$

ANSWER:
$(2 x-5)(x+6)$
9. $16 x^{2}-16 x+3$

ANSWER:
$(4 x-3)(4 x-1)$

Solve each equation.
10. $x^{2}-36=0$

ANSWER:
-6, 6
11. $12 x^{2}-18 x=0$

ANSWER:
0, $\frac{3}{2}$
12. $12 x^{2}-2 x-2=0$

ANSWER:
$-\frac{1}{3}, \frac{1}{2}$
13. $x^{2}-9 x=0$

ANSWER:
0, 9
14. $x^{2}-3 x-28=0$

ANSWER:
$-4,7$
15. $2 x^{2}-24 x=-72$

ANSWER:

6
16. CCSS SENSE-MAKING Tamika wants to double the area of her garden by increasing the length and width by the same amount. What will be the dimensions of her garden then?

ANSWER:

9 m by 12 m

Write a quadratic equation in standard form

 with the given root(s).17.7

ANSWER:

$x^{2}-14 x+49=0$
18. $-5, \frac{1}{2}$

ANSWER:
$2 x^{2}+9 x-5=0$
19. $\frac{1}{5}, 6$

ANSWER:
$5 x^{2}-31 x+6=0$

Factor each polynomial.

20. $40 a^{2}-32 a$

ANSWER:
$8 a(5 a-4)$
21. $51 c^{3}-34 c$

ANSWER:
$17 c\left(3 c^{2}-2\right)$
22. $32 x y+40 b x-12 a y-15 a b$

ANSWER:
$(8 x-3 a)(4 y+5 b)$
23. $3 x^{2}-12$

ANSWER:
$3(x+2)(x-2)$
24. $15 y^{2}-240$

ANSWER:
$15(y+4)(y-4)$
25. $48 c g+36 c f-4 d g-3 d f$

ANSWER:
$(12 c-d)(4 g+3 f)$
26. $x^{2}+13 x+40$

ANSWER:
$(x+8)(x+5)$
27. $x^{2}-9 x-22$

ANSWER:
$(x-11)(x+2)$
28. $3 x^{2}+12 x-36$

ANSWER:
$3(x+6)(x-2)$
29. $15 x^{2}+7 x-2$

ANSWER:
$(5 x-1)(3 x+2)$
30. $4 x^{2}+29 x+30$

ANSWER:
$(4 x+5)(x+6)$
31. $18 x^{2}+15 x-12$

ANSWER:
$3(2 x-1)(3 x+4)$
32. $8 x^{2} z^{2}-4 x z^{2}-12 z^{2}$

ANSWER:
$4 z^{2}(2 x-3)(x+1)$
33. $9 x^{2}-25$

ANSWER:
$(3 x+5)(3 x-5)$
34. $18 x^{2} y^{2}-24 x y^{2}+36 y^{2}$

ANSWER:
$6 y^{2}\left(3 x^{2}-4 x+6\right)$
35. $15 x^{2}-84 x-36$

ANSWER:
$3(5 x+2)(x-6)$
36. $12 x^{2}+13 x-14$

ANSWER:
$(4 x+7)(3 x-2)$
37. $12 x y^{2}-108 x$

ANSWER:
$12 x(y+3)(y-3)$

Solve each equation by factoring.
38. $x^{2}+4 x-45=0$

ANSWER:
5, -9
39. $x^{2}-5 x-24=0$

ANSWER:
8, -3
40. $x^{2}=121$

ANSWER:
11, -11
41. $x^{2}+13=17$

ANSWER:
2, -2
42. $-3 x^{2}-10 x+8=0$

ANSWER:
$-4, \frac{2}{3}$
43. $-8 x^{2}+46 x-30=0$

ANSWER:
5, $\frac{3}{4}$
44. GEOMETRY The hypotenuse of a right triangle is 1 centimeter longer than one side and 4 centimeters longer than three times the other side. Find the dimensions of the triangle.

ANSWER:
$7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
45. NUMBER THEORY Find two consecutive even integers with a product of 624 .

ANSWER:
24 and 26 or -24 and -26

GEOMETRY Find x and the dimensions of each rectangle.

ANSWER:
$x=10 ; 8 \mathrm{ft}$ by 12 ft

ANSWER:
$x=20 ; 24$ in. by 18 in .

ANSWER:
$x=12 ; 14 \mathrm{ft}$ by 32 ft

Solve each equation by factoring.
49. $12 x^{2}-4 x=5$

ANSWER:
$-\frac{1}{2}, \frac{5}{6}$
50. $5 x^{2}=15 x$

ANSWER:

0, 3
51. $16 x^{2}+36=-48 x$

ANSWER:
$-\frac{3}{2}$
52. $75 x^{2}-60 x=-12$

ANSWER:
$\frac{2}{5}$
53. $4 x^{2}-144=0$

ANSWER:
6, -6
54. $-7 x+6=20 x^{2}$

ANSWER:
$\frac{2}{5},-\frac{3}{4}$
55. MOVIE THEATER A company plans to build a large multiplex theater. The financial analyst told her manager that the profit function for their theater was $P(x)=-x^{2}+48 x-512$, where x is the number of movie screens, and $P(x)$ is the profit earned in thousands of dollars. Determine the range of production of movie screens that will guarantee that the company will not lose money.

ANSWER:

16 to 32 screens

Write a quadratic equation in standard form with the given root(s).
56. $-\frac{4}{7}, \frac{3}{8}$

ANSWER:
$56 x^{2}+11 x-12=0$
57. 3.4, 0.6

ANSWER:
$25 x^{2}-100 x+51=0$
58. $\frac{2}{11}, \frac{5}{9}$

ANSWER:
$99 x^{2}-73 x+10=0$

Solve each equation by factoring.
59. $10 x^{2}+25 x=15$

ANSWER:
$-3, \frac{1}{2}$
60. $27 x^{2}+5=48 x$

ANSWER:
$\frac{5}{3}, \frac{1}{9}$
61. $x^{2}+0.25 x=1.25$

ANSWER:
1,- $\frac{5}{4}$
62. $48 x^{2}-15=-22 x$

ANSWER:
$\frac{3}{8},-\frac{5}{6}$
63. $3 x^{2}+2 x=3.75$

ANSWER:
$-\frac{3}{2}, \frac{5}{6}$
64. $-32 x^{2}+56 x=12$

ANSWER:
$\frac{1}{4}, \frac{3}{2}$
65. DESIGN A square is cut out of the figure at the right. Write an expression for the area of the figure that remains, and then factor the expression.

ANSWER:
$x^{2}-6^{2} ;(x+6)(x-6)$
66. CCSS PERSEVERANCE After analyzing the market, a company that sells Web sites determined the profitability of their product was modeled by P
$(x)=-16 x^{2}+368 x-2035$, where x is the price of each Web site and $P(x)$ is the company's profit.
Determine the price range of the Web sites that will be profitable for the company.

ANSWER:
\$9.25 to \$13.75
67. PAINTINGS Enola wants to add a border to her painting, distributed evenly, that has the same area as the painting itself. What are the dimensions of the painting with the border included?

ANSWER:
20 in . by 15 in .
68. MULTIPLE REPRESENTATIONS In this problem, you will consider $a(x-p)(x-q)=0$.
a. GRAPHICAL Graph the related function for a $=1, p=2$, and $q=-3$.
b. ANALYTICAL What are the solutions of the equation?
c. GRAPHICAL Graph the related functions for a $=4,-3$, and $\frac{1}{2}$ on the same graph.
d. VERBAL What are the similarities and differences between the graphs?
e. VERBAL What conclusion can you make about the relationship between the factored form of a quadratic equation and its solutions?

ANSWER:

a.

b. 2 and -3
c.

d. Sample answer: They all have the same roots, p and q. Therefore, they all have the same solutions. The graphs are shaped differently due to the value of a. The graph with $a=-3$ is flipped due to the negative.
e. When quadratic equations have the same factors, they will have the same solutions, regardless of the
72. $3 x^{2}+2 x y+10 y+15 x$

ANSWER:

$(3 x+2 y)(x+5)$
73. $6 a^{2} b^{2}-12 a b^{2}-18 b^{3}$

ANSWER:

$6 b^{2}\left(a^{2}-2 a-3 b\right)$
74. $12 a^{2}-18 a b+30 a b^{3}$

ANSWER:

$$
6 a\left(2 a-3 b+5 b^{3}\right)
$$

75. $32 a x+12 b x-48 a y-18 b y$

ANSWER:

$2(2 x-3 y)(8 a+3 b)$
76. $30 a c+80 b d+40 a d+60 b c$

ANSWER:

$10(a+2 b)(3 c+4 d)$
77. $5 a x^{2}-2 b y^{2}-5 a y^{2}+2 b x^{2}$

ANSWER:

$(x+y)(x-y)(5 a+2 b)$
78. $12 c^{2} x+4 d^{2} y-3 d^{2} x-16 c^{2} y$

ANSWER:

$$
(2 c+d)(2 c-d)(3 x-4 y)
$$

79. ERROR ANALYSIS Gwen and Morgan are solving $-12 x^{2}+5 x+2=0$. Is either of them correct? Explain your reasoning.
Gwen
$-12 x^{2}+5 x+2=0$
$-12 x^{2}+8 x-3 x+2=0$
$4 x(-3 x+2)-(3 x+2)=0$
$(4 x-1)(3 x+2)=0$
$x=\frac{1}{4}$ or $-\frac{2}{3}$

ANSWER:
Sample answer: Morgan; Gwen did not have like terms in the parentheses in the third line.
80. CHALLENGE Solve $3 x^{6}-39 x^{4}+108 x^{2}=0$ by factoring.

ANSWER:

$0,3,-3,2$, or -2
81. CHALLENGE The rule for factoring a difference of cubes is shown below. Use this rule to factor $40 x^{5}-135 x^{2} y^{3}$.] $[$
$a^{3}-b^{3}$
$=(a-b)\left(a^{2}+a b+b^{2}\right)$

ANSWER:
$5 x^{2}(2 x-3 y)\left(4 x^{2}+6 x y+9 y^{2}\right)$
82. OPEN ENDED Choose two integers. Then write an equation in standard form with those roots. How would the equation change if the signs of the two roots were switched?

ANSWER:
Sample answer: 3 and $6 \rightarrow x^{2}-9 x+18=0 .-3$ and $-6 \rightarrow x^{2}+9 x+18=0$. The linear term changes sign.
83. CHALLENGE For a quadratic equation of the form $(x-p)(x-q)=0$, show that the axis of symmetry of the related quadratic function is located halfway between the x-intercepts p and q.

ANSWER:

Sample answer:

$$
\begin{array}{ll}
(x-p)(x-q)=0 & \text { Original equation } \\
x^{2}-p x-q x+p q=0 & \text { Multiply } \\
x^{2}-(p+q) x+p q=0 & \text { Simplify. } \\
x=-\frac{b}{2 a} & \text { Formula for axis } \\
\text { of symmetry } & \\
x=-\frac{-(p+q)}{2(1)} & a=1 \text { and } b=- \\
(p+q) & \\
x=\frac{p+q}{2} & \text { Simplify. }
\end{array}
$$

x is midway between p and q. Definition of midpoint
84. WRITE A QUESTION A classmate is using the guess and check strategy to factor trinomials of the form $x^{2}+b x+c$. Write a question to help him think of a way to use that strategy for $a x^{2}+b x+c$.

ANSWER:

Sample answer: What do you know about $a \cdot c$ to use guess and check to factor trinomials of the form $a x^{2}+b x+c$?
85. CCSS ARGUMENTS Determine whether the following statement is sometimes, always, or never true. Explain your reasoning.
In a quadratic equation in standard form where a, b, and c are integers, if b is odd, then the quadratic cannot be a perfect square trinomial.

ANSWER:

Sample answer: Always; in order to factor using perfect square trinomials, the coefficient of the linear term, $b x$, must be a multiple of 2 , or even.
86. WRITING IN MATH Explain how to factor a trinomial in standard form with $a>1$.

ANSWER:

Sample answer: In standard form, we have $a x^{2}+$ $b x+c$. Multiply a and c.
Then find a pair of integers, g and h, that multiply to equal $a c$ and add to equal b.
Then write out the quadratic, turning the middle term, $b x$, into $g x+h x$.
We now have $a x^{2}+g x+h x+c$.
Now factor the GCF from the first two terms and then factor the GCF from the second two terms.
So we now have $\operatorname{GCF}(x-q)+\operatorname{GCF}_{2}(x-q)$.
Simplifying, we get $\left(\mathrm{GCF}+\mathrm{GCF}_{2}\right)(x-q)$ or $(x-p)$ $(x-q)$.
87. SHORT RESPONSE If $A B C D$ is transformed by $(x, y) \rightarrow(3 x, 4 y)$, determine the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

ANSWER:

192 square units
88. For $y=2|6-3 x|+4$, which set describes x when y < 6 ?

A $\left\{x \left\lvert\, \frac{5}{3}<x<\frac{7}{3}\right.\right\}$
B $\left\{x \left\lvert\, x<\frac{5}{3}\right.\right.$ or $\left.x>\frac{7}{3}\right\}$
$\mathbf{C}\left\{x \left\lvert\, x<\frac{5}{3}\right.\right\}$
D $\left\{x \left\lvert\, x>\frac{7}{3}\right.\right\}$

ANSWER:
A
89. PROBABILITY A 5-character password can contain the numbers 0 through 9 and 26 letters of the alphabet. None of the characters can be repeated. What is the probability that the password begins with a consonant?

F $\frac{21}{26}$
G $\frac{21}{35}$
H $\frac{21}{36}$

J $\frac{5}{36}$

ANSWER:
H
90. SAT/ACT If $c=\frac{8 a^{3}}{b}$, what happens to the value of c when both a and b are doubled?

A c is unchanged.
B c is halved.
$\mathbf{C} c$ is doubled.

D c is multiplied by 4 .
$\mathbf{E} c$ is multiplied by 8 .

ANSWER:
D

Use the related graph of each equation to determine its solutions.
91. $x^{2}-2 x-8=0$

ANSWER:
$-2,4$
92. $x^{2}+4 x=12$

ANSWER:
$-6,2$
93. $x^{2}+4 x+4=0$

ANSWER:
-2

Graph each function.

$94 f(x)=x^{2}-6 x+2$

ANSWER:

$$
95 f(x)=-2 x^{2}+4 x+1
$$

ANSWER:

$96 f(x)=(x-3)(x+4)$

ANSWER:

97. FUNDRAISING Lawrence High School sold wrapping paper and boxed cards for their fundraising event. The school gets $\$ 1.00$ for each roll of wrapping paper sold and $\$ 0.50$ for each box of cards sold.

Total Amounts for Each Class		
Class	Wrapping Peper	Cards
Freshmen	72	49
Sophomores	68	63
Juniors	90	56
Seniors	86	62

a. Write a matrix that represents the amounts sold for each class and a matrix that represents the amount of money the school earns for each item sold.
b. Write a matrix that shows how much each class earned.
c. Which class earned the most money?
d. What is the total amount of money the school made from the fundraiser?

ANSWER:
a.
$\left[\begin{array}{ll}72 & 49 \\ 68 & 63 \\ 90 & 56 \\ 86 & 62\end{array}\right],\left[\begin{array}{l}1.00 \\ 0.50\end{array}\right]$
b.
$\left[\begin{array}{c}96.50 \\ 99.50 \\ 118 \\ 117\end{array}\right]$
c. juniors
d. $\$ 431$

4-3 Solving Quadratic Equations by Factoring

Simplify.
98. $\sqrt{5} \cdot \sqrt{15}$

ANSWER:
$5 \sqrt{3}$
99. $\sqrt{8} \cdot \sqrt{32}$

ANSWER:
16
100. $2 \sqrt{3} \cdot \sqrt{27}$

ANSWER:
18

