Solve each equation by using the Square Root Property. Round to the nearest hundredth if necessary.

1. $x^2 + 12x + 36 = 6$

ANSWER: {-8.45, -3.55}

2. $x^2 - 8x + 16 = 13$

ANSWER:

{0.39, 7.61}

3. $x^2 + 18x + 81 = 15$

ANSWER:

{-12.87, -5.13}

4. $9x^2 + 30x + 25 = 11$

ANSWER:

 $\{-2.77, -0.56\}$

5. **LASER LIGHT SHOW** The area *A* in square feet of a projected laser light show is given by $A = 0.16d^2$, where *d* is the distance from the laser to the screen in feet. At what distance will the projected laser light show have an area of 100 square feet?

ANSWER: 25 ft Find the value of *c* that makes each trinomial a perfect square. Then write the trinomial as a perfect square.

 $6 x^2 - 10x + c$ ANSWER: 25: $(x-5)^2$ 7. $x^2 - 5x + c$ ANSWER: $6.25; (x-2.5)^2$ Solve each equation by completing the square. 8. $x^2 + 2x - 8 = 0$ ANSWER: $\{-4, 2\}$ 9 $x^2 - 4x + 9 = 0$ ANSWER: $\{2-i\sqrt{5}, 2+i\sqrt{5}\}$ 10. $2x^2 - 3x - 3 = 0$ ANSWER: $\{-0.69, 2.19\}$

 $11. \ 2x^2 + 6x - 12 = 0$

ANSWER: {-4.37, 1.37}

<u>4-5 Completing the Square</u>

12. $x^2 + 4x + 6 = 0$	18. $x^2 + 12x + 36 = 5$
ANSWER: $\{-2-i\sqrt{2}, -2+i\sqrt{2}\}$	ANSWER: {-8.24, -3.76}
13. $x^2 + 8x + 10 = 0$	19. $x^2 - 2x + 1 = 4$
ANSWER: {-6.45, -1.55}	ANSWER: {-1,3}
Solve each equation by using the Square Root Property. Round to the nearest hundredth if	20. $x^2 - 5x + 6.25 = 4$
necessary. 14. $x^2 + 4x + 4 = 10$	ANSWER: {0.5, 4.5}
ANSWER: {-5.16, 1.16}	21. $x^2 - 15x + 56.25 = 8$
15. $x^2 - 6x + 9 = 20$	ANSWER: {4.67, 10.33}
ANSWER:	22. $x^2 + 32x + 256 = 1$
{-1.47, 7.47}	ANSWER: {-17, -15}
16. $x^2 + 8x + 16 = 18$ <i>ANSWER</i> : {-8.24, 0.24}	23. $x^2 - 3x + \frac{9}{4} = 6$
17. $x^2 + 10x + 25 = 7$	ANSWER: {-0.95, 3.95}
ANSWER: {-7.65, -2.35}	24. $x^2 + 7x + \frac{49}{4} = 4$
	ANSWER: {-5.5, -1.5}

25. $x^2 - 9x + \frac{81}{4} = \frac{1}{4}$

ANSWER: {4, 5}

Find the value of *c* that makes each trinomial a perfect square. Then write the trinomial as a perfect square.

26. $x^2 + 8x + c$

ANSWER: $16; (x + 4)^2$

27. $x^2 + 16x + c$

ANSWER:

64; $(x+8)^2$

28. $x^2 - 11x + c$

ANSWER: $\frac{121}{4}; (x - \frac{11}{2})^2$

29. $x^2 + 9x + c$

ANSWER:

 $20.25; (x + 4.5)^2$

Solve each equation by completing the square.

30.
$$x^2 - 4x + 12 = 0$$

ANSWER:
 $\{2 - 2i\sqrt{2}, 2 + 2i\sqrt{2}\}$
31. $x^2 + 2x - 12 = 0$
ANSWER:
 $\{-4.61, 2.61\}$
32. $x^2 + 6x + 8 = 0$
ANSWER:
 $\{-4, -2\}$
33. $x^2 - 4x + 3 = 0$
ANSWER:
 $\{1, 3\}$
34. $2x^2 + x - 3 = 0$
ANSWER:
 $\{1, 3\}$
35. $2x^2 - 3x + 5 = 0$

ANSWER: $\left\{\frac{3-i\sqrt{31}}{4}, \frac{3+i\sqrt{31}}{4}\right\}$

36. $2x^2 + 5x + 7 = 0$ ANSWER: $\left\{\frac{-5 - i\sqrt{31}}{4}, \frac{-5 + i\sqrt{31}}{4}\right\}$ 37. $3x^2 - 6x - 9 = 0$ ANSWER: $\{-1, 3\}$ 38. $x^2 - 2x + 3 = 0$ ANSWER: $\left\{1 - i\sqrt{2}, 1 + i\sqrt{2}\right\}$

39. $x^2 + 4x + 11 = 0$

ANSWER:

 $\{-2-i\sqrt{7}, -2+i\sqrt{7}\}$

40. $x^2 - 6x + 18 = 0$

ANSWER:

 $\{3-3i,3+3i\}$

41. $x^2 - 10x + 29 = 0$

ANSWER:

 $]{5-2i, 5+2i}$

42. $3x^2 - 4x = 2$

ANSWER: {-0.39, 1.72}

43. $2x^2 - 7x = -12$

ANSWER: $\left\{\frac{7-i\sqrt{47}}{4}, \frac{7+i\sqrt{47}}{4}\right\}$

44. $x^2 - 2.4x = 2.2$

ANSWER: {-0.71, 3.11}

45. $x^2 - 5.3x = -8.6$

ANSWER: $\{2.65 - i\sqrt{1.5775}, 2.65 + i\sqrt{1.5775}\}$

46. $x^2 - \frac{1}{5}x - \frac{11}{5} = 0$

ANSWER: {-1.39, 1.59}

$$47. \ x^2 - \frac{9}{2}x - \frac{24}{5} = 0$$

ANSWER: {-0.89, 5.39}

48. **CCSS MODELING** An architect's blueprints call for a dining room measuring 13 feet by 13 feet. The customer would like the dining room to be a square, but with an area of 250 square feet. How much will this add to the dimensions of the room?

ANSWER: about 2.81 ft

Solve each equation. Round to the nearest hundredth if necessary.

49. $4x^2 - 28x + 49 = 5$

ANSWER: {2.38, 4.62}

50. $9x^2 + 30x + 25 = 11$

ANSWER:

 $\{-2.77, -0.56\}$

51. $x^2 + x + \frac{1}{3} = \frac{2}{3}$

ANSWER:

 $\{-1.26, 0.26\}$

52. $x^2 + 1.2x + 0.56 = 0.91$

ANSWER:

 $\{-1.44, 0.24\}$

53. **FIREWORKS** A firework's distance *d* meters from the ground is given by $d = -1.5t^2 + 25t$, where *t* is the number of seconds after the firework has been lit.

a. How many seconds have passed since the firework was lit when the firework explodes if it explodes at the maximum height of its path?

b. What is the height of the firework when it explodes?

ANSWER: **a.** $8\frac{1}{3}$ seconds

b. about 104.2 ft

Find the value of c that makes each trinomial a perfect square. Then write the trinomial as a perfect square.

54. $x^2 + 0.7x + c$

ANSWER: $0.1225; (x + 0.35)^2$

55. $x^2 - 3.2x + c$

ANSWER: 2.56; (*x* – 1.6)²

56. $x^2 - 1.8x + c$

ANSWER: $\frac{81}{100}; \left(x - \frac{9}{10}\right)^2$

57. MULTIPLE REPRESENTATIONS In this

problem, you will use quadratics to investigate golden rectangles and the golden ratio. **a. GEOMETRIC**

- Draw square ABCD.
- Locate the midpoint of \overline{CD} . Label the midpoint *P*.
- Draw PB.

• Construct an arc with a radius of \overline{PB} from B clockwise past the bottom of the square.

• Extend \overline{CD} until it intersects the arc. Label this point Q.

• Construct rectangle *ARQD*.

b. ALGEBRAIC Let AD = x and CQ = 1. Use completing the square to solve $\frac{DQ}{AD} = \frac{QR}{CQ}$ for *x*.

c. TABULAR Make a table of x and values for CQ = 2, 3, and 4.

d. VERBAL What do you notice about the *x*-values? Write an equation you could use to determine *x* for CQ = n, where *n* is a nonzero real number.

CQ	x
2	$1 + \sqrt{5}$
3	$\frac{3+3\sqrt{5}}{2}$
4	$2 + 2\sqrt{5}$

d. Sample answer: the *x*-values are multiples of

$$\frac{1+\sqrt{5}}{2}$$
; $x = \frac{n(1+\sqrt{5})}{2}$

58. **ERROR ANALYSIS** Alonso and Aida are solving $x^2 + 8x - 20 = 0$ by completing the square. Is either of them correct? Explain your reasoning.

Alonso

$$x^{2} + 8x - 20 = 0$$

 $x^{2} + 8x = 20$
 $x^{2} + 8x = 20$
 $x^{2} + 8x + 16 = 20 + 16$
 $(x + 4)^{2} = 36$
 $x + 4 = \pm 6$
 $x = -4 \pm 6$
Aida
 $x^{2} + 8x - 20 = 0$
 $x^{2} + 8x = 20$
 $x^{2} + 8x = 20$
 $(x + 4)^{2} = 20$
 $(x + 4)^{2} = 20$
 $x + 4 = \pm \sqrt{20}$
 $x = -4 \pm \sqrt{20}$

ANSWER:

Alonso; Aida did not add 16 to each side; she added it only to the left side.

59. **CHALLENGE** Solve $x^2 + bx + c = 0$ by completing the square. Your answer will be an expression for *x* in terms of *b* and *c*.

ANSWER:

$$x = \frac{-b}{2} \pm \sqrt{\frac{b^2}{4} - c}$$

60. **CCSS ARGUMENTS** Without solving, determine how many unique solutions there are for each equation. Are they rational, real, or complex? Justify your reasoning.

a.
$$(x + 2)^2 = 16$$

b. $(x - 2)^2 = 16$
c. $-(x - 2)^2 = 16$
d. $36 - (x - 2)^2 = 16$
e. $16(x + 2)^2 = 0$
f. $(x + 4)^2 = (x + 6)^2$

ANSWER:

a. 2; rational; 16 is a perfect square so x + 2 and x are rational.

b. 2; rational; 16 is a perfect square so x - 2 and x are rational.

c. 2; complex; If the opposite of square is positive, the square is negative. The square root of a negative number is complex.

d. 2; real; The square must equal 20. Since that is positive but not a perfect square, the solutions will be real but not rational.

e. 1; rational; The expression must be equal to 0 and only -2 makes the expression equal to 0.

f. 1; rational; The expressions (x + 4) and (x + 6) must either be equal or opposites. No value makes them equal, -5 makes them opposites. The only solution is -5.

61. **OPEN ENDED** Write a perfect square trinomial equation in which the linear coefficient is negative and the constant term is a fraction. Then solve the equation.

ANSWER:

Sample answer: $x^2 - \frac{2}{3}x + \frac{1}{9} = \frac{1}{4}; \left\{\frac{5}{6}, -\frac{1}{6}\right\}$

62. **WRITING IN MATH** Explain what it means to complete the square. Include a description of the steps you would take.

ANSWER:

Е

Completing the square allows you to rewrite one side of a quadratic equation in the form of a perfect square. Once in this form, the equation can be solved by using the Square Root Property.

63. SAT/ACT If $x^2 + y^2 = 2xy$, then y must equal	
A –1	
B 0	
C 1	
\mathbf{D}_{-x}	
E x	
ANSWER:	

64. GEOMETRY Find the area of the shaded region.

65. **SHORT RESPONSE** What value of *c* should be used to solve the following equation by completing the square?

$$5x^2 - 50x + c = 12 + c$$

ANSWER:

125

- 66. If 5 3i is a solution for $x^2 + ax + b = 0$, where *a* and *b* are real numbers, what is the value of *b*?
 - **A** 10
 - **B** 14
 - **C** 34
 - **D** 40

ANSWER: C

Simplify.

67. $(8+5i)^2$

ANSWER:

39 + 80i

68. 4(3-i) + 6(2-5i)

ANSWER:

24 – 34*i*

69. $\frac{5-2i}{6+9i}$

ANSWER:

 $\frac{4}{39} - \frac{19}{39}i$

Write a quadratic equation in standard form with the given root(s).

70.
$$\frac{4}{5}, \frac{3}{4}$$

ANSWER:

 $20x^2 - 31x + 12 = 0$

71.
$$-\frac{2}{5}$$
,6

ANSWER: $5x^2 - 28x - 12 = 0$

72.
$$-\frac{1}{4}, -\frac{6}{7}$$

ANSWER: $28x^2 + 31x + 6 = 0$

73. **TRAVEL** Yoko is going with the Spanish Club to Costa Rica. She buys 10 traveler's checks in denominations of \$20, \$50, and \$100, totaling \$370. She has twice as many \$20 checks as \$50 checks. How many of each denomination of traveler's checks does she have?

ANSWER:

1 \$100, 3 \$50, and 6 \$20 checks

74. SHOPPING Main St. Media sells all DVDs for one price and all books for another price. Alex bought 4 DVDs and 6 books for \$170, while Matt bought 3 DVDs and 8 books for \$180. What is the cost of a DVD and the cost of a book?

ANSWER:

DVD: \$20; book: \$15

Graph each inequality.

75. $y \ge 4x - 3$

ANSWER:

<u>4-5 Completing the Square</u>

76. 2x - 3y < 6

ANSWER:

77. $5x + 2y + 3 \le 0$

Write the piecewise function shown in each graph.

78.

ANSWER:

$$f(x) = \begin{cases} -4 \text{ if } x \le -2 \\ -2x + 3 \text{ if } -2 < x < 1 \\ x - 5 \text{ if } x \ge 2 \end{cases}$$

 $f(x) = \begin{cases} x + 12 \text{ if } x \le -6\\ 8 \text{ if } -6 < x < 2\\ -2.5x + 15 \text{ if } x \ge 2 \end{cases}$

Evaluate $b^2 - 4ac$ for the given values of a, b, and c.

81.
$$a = 5, b = 6, c = 2$$

ANSWER: -4

82. a = -2, b = -7, c = 3

ANSWER: 73

<u>4-5 Completing the Square</u>

83. a = -5, b = -8, c = -10

ANSWER:

-136