List all of the possible rational zeros of each function.

1. $f(x)=x^{3}-6 x^{2}-8 x+24$

ANSWER:

$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$
2. $f(x)=2 x^{4}+3 x^{2}-x+15$

ANSWER:

$$
\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}
$$

3. CCSS REASONING The volume of the triangular pyramid is 210 cubic inches. Find the dimensions of the solid.

ANSWER:
5 in. $\times 9$ in. $\times 28$ in.

Find all of the rational zeros of each function.

4. $f(x)=x^{3}-6 x^{2}-13 x+42$

ANSWER:
$-3,2,7$
5. $f(x)=2 x^{4}+11 x^{3}+26 x^{2}+29 x+12$

ANSWER:

$$
-\frac{3}{2},-1
$$

Find all of the zeros of each function.
6. $f(x)=3 x^{3}-2 x^{2}-8 x+5$

ANSWER:

$$
\frac{5}{3}, \frac{-1 \pm \sqrt{5}}{2}
$$

7. $f(x)=8 x^{3}+14 x^{2}+11 x+3$

ANSWER:
$-\frac{1}{2}, \frac{-5 \pm i \sqrt{23}}{8}$
8. $f(x)=4 x^{4}+13 x^{3}-8 x^{2}+13 x-12$

ANSWER:
$-4, \frac{3}{4},-i, i$
9. $f(x)=4 x^{4}-12 x^{3}+25 x^{2}-14 x-15$

ANSWER:
$-\frac{1}{2}, \frac{3}{2}, 1+2 i, 1-2 i$

List all of the possible rational zeros of each function.

10. $f(x)=x^{4}+8 x-32$

ANSWER:
$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32$
11. $f(x)=x^{3}+x^{2}-x-56$

ANSWER:
$\pm 1, \pm 2, \pm 4, \pm 7, \pm 8, \pm 14, \pm 28, \pm 56$
12. $f(x)=2 x^{3}+5 x^{2}-8 x-10$

ANSWER:
$\pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{2}, \pm \frac{5}{2}$
13. $f(x)=3 x^{6}-4 x^{4}-x^{2}-35$

ANSWER:
$\pm 1, \pm 5, \pm 7, \pm 35, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{7}{3}, \pm \frac{35}{3}$
14. $f(x)=6 x^{5}-x^{4}+2 x^{3}-3 x^{2}+2 x-18$

ANSWER:
$\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{6}$
15. $f(x)=8 x^{4}-4 x^{3}-4 x^{2}+x+42$

ANSWER:
$\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21$,
$\pm 42, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{7}{2}, \pm \frac{21}{2}, \pm \frac{1}{4}$,
$\pm \frac{3}{4}, \pm \frac{7}{4}, \pm \frac{21}{4}, \pm \frac{1}{8}, \pm \frac{3}{8}, \pm \frac{7}{8}, \pm \frac{21}{8}$
16. $f(x)=15 x^{3}+6 x^{2}+x+90$

ANSWER:

$$
\begin{aligned}
& \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 9, \pm 10, \pm 15, \pm 18, \pm 30, \pm 45, \pm 90, \pm \frac{1}{3}, \pm \frac{2}{3} \\
& \pm \frac{5}{3}, \pm \frac{10}{3}, \pm \frac{1}{5}, \pm \frac{2}{5}, \pm \frac{3}{5}, \pm \frac{6}{5}, \pm \frac{9}{5}, \pm \frac{18}{5}, \pm \frac{1}{15}, \pm \frac{2}{15}
\end{aligned}
$$

17. $f(x)=16 x^{4}-5 x^{2}+128$

ANSWER:
$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64, \pm 128, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm \frac{1}{16}$
18. MANUFACTURING A box is to be constructed by cutting out equal squares from the corners of a square piece of cardboard and turning up the sides.

a. Write a function $V(x)$ for the volume of the box.
b. For what value of x will the volume of the box equal 1152 cubic centimetres?
c. What will be the volume of the box if $x=6$ centimetres?

ANSWER:

a. $V(x)=(28-2 x)(28-2 x) x=4 x^{3}-112 x^{2}+784 x$
b. 2 or 8
c. $1536 \mathrm{~cm}^{6}$

Find all of the rational zeros of each function.

19. $f(x)=x^{3}+10 x^{2}+31 x+30$

ANSWER:
$-5,-3,-2$
20. $f(x)=x^{3}-2 x^{2}-56 x+192$

ANSWER:
-8, 4, 6
21. $f(x)=4 x^{3}-3 x^{2}-100 x+75$

ANSWER:
$-5, \frac{3}{4}, 5$
22. $f(x)=4 x^{4}+12 x^{3}-5 x^{2}-21 x+10$

ANSWER:
$-\frac{5}{2},-2, \frac{1}{2}, 1$
23. $f(x)=x^{4}+x^{3}-8 x-8$

ANSWER:
$-1,2$
24. $f(x)=2 x^{4}-3 x^{3}-24 x^{2}+4 x+48$

ANSWER:
$-2,4, \frac{3}{2}$
25. $f(x)=4 x^{3}+x^{2}+16 x+4$

ANSWER:
$-\frac{1}{4}$
26.f $(x)=81 x^{4}-256$

ANSWER:
$-\frac{4}{3}, \frac{4}{3}$

Find all of the zeros of each function.
27. $f(x)=x^{3}+3 x^{2}-25 x+21$

ANSWER:
-7, 1, 3
28. $f(x)=6 x^{3}+5 x^{2}-9 x+2$

ANSWER:
$\frac{2}{3}, \frac{-3 \pm \sqrt{17}}{4}$
29. $f(x)=x^{4}-x^{3}-x^{2}-x-2$

ANSWER:
$2,-1, \boldsymbol{i},-\boldsymbol{i}$
30. $f(x)=10 x^{3}-17 x^{2}-7 x+2$

ANSWER:
$-\frac{1}{2}, \frac{1}{5}, 2$
31. $f(x)=x^{4}-3 x^{3}+x^{2}-3 x$

ANSWER:
$0,3,-\boldsymbol{i}, \boldsymbol{i}$
32. $f(x)=6 x^{3}+11 x^{2}-3 x-2$

ANSWER:
$\frac{1}{2},-\frac{1}{3},-2$
33. $f(x)=6 x^{4}+22 x^{3}+11 x^{2}-38 x-40$

ANSWER:
$-2, \frac{4}{3}, \frac{-3 \pm i}{2}$
34. $f(x)=2 x^{3}-7 x^{2}-8 x+28$

ANSWER:
$-2,2, \frac{7}{2}$
35. $f(x)=9 x^{5}-94 x^{3}+27 x^{2}+40 x-12$

ANSWER:
3, $\frac{2}{3},-\frac{2}{3}, \frac{-3 \pm \sqrt{13}}{2}$
36. $f(x)=x^{5}-2 x^{4}-12 x^{3}-12 x^{2}-13 x-10$

ANSWER:
$-1,-2,5, \boldsymbol{i},-\boldsymbol{i}$
37.f $(x)=48 x^{4}-52 x^{3}+13 x-3$

ANSWER:
$-\frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}$
38.f $(x)=5 x^{4}-29 x^{3}+55 x^{2}-28 x$

ANSWER:
$\frac{4}{5}, 0, \frac{5 \pm i \sqrt{3}}{2}$
39. SWIMMING POOLS A diagram of the swimming pool at the Midtown Community Center is shown below. The pool can hold 9175 cubic feet of water.

a. Write a polynomial function that represents the volume of the swimming pool.
b. What are the possible values of x ? Which of these values are reasonable?

ANSWER:

a. $V(x)=324 x^{3}+54 x^{2}-19 x-2$
b. $1.05 i,-4.22 i, 3 ; 3$ is the only reasonable value for
x. The other two values are imaginary.
40. CCSS MODELING A portion of the path of a certain roller coaster can be modeled by $f(t)=t^{4}-$ $31 t^{3}+308 t^{2}-1100 t+1200$ where t represents the time in seconds and $f(t)$ represents when the height of the roller coaster is at a relative maximum. Use the Rational Zero Theorem to determine the four times at which the roller coaster is at ground level.
ANSWER:
$2 \mathrm{~s}, 4 \mathrm{~s}, 10 \mathrm{~s}$, and 15 s
41. FOOD A restaurant orders spaghetti sauce in cylindrical metal cans. The volume of each can is about 160π cubic inches, and the height of the can is 6 inches more than the radius.
a. Write a polynomial equation that represents the volume of a can. Use the formula for the volume of a cylinder, $v=\pi r^{2} h$
b. What are the possible values of r ? Which of these values are reasonable for this situation?
c. Find the dimensions of the can.

ANSWER:

a. $v=\pi r^{3}+6 \pi r^{2}$
b. $4,-5 \pm i \sqrt{15} ; 4$
c. $r=4 \mathrm{in}$., $h=10 \mathrm{in}$.
42. Refer to the graph.

a. Find all of the zeros of $f(x)=2 x^{3}+7 x^{2}+2 x-3$ and $g(x)=2 x^{3}-7 x^{2}+2 x+3$.
b. Determine which function, f or g, is shown in the graph at the right.
ANSWER:
a. $-1, \frac{1}{2},-3 ;-\frac{1}{2}, 1,3$
b. g
43. MUSIC SALES Refer to the beginning of the lesson.
a. Write a polynomial equation that could be used to determine the year in which music sales would be about $\$ 9,000,000,000$.
b. List the possible whole number solutions for your equation in part a.
c. Determine the approximate year in which music sales will reach $\$ 9,000,000,000$.
d. Does the model represent a realistic estimate for all future music sales? Explain your reasoning.
ANSWER:
a. $30 t^{3}-478 t^{2}+1758 t+1092=0$
b. $1,2,3,4,6,7,12,13,14,21,26,28,39,42,52,78$, 84, 91, 156, 182, 273, 364, 546, 1092
c. 2013
d. No; Sample answer: Music sales fluctuate from 2005 to 2015, then increase indefinitely. It is not reasonable to expect sales to increase forever.

Find all of the zeros of each function.
44. $f(x)=x^{5}+3 x^{4}-19 x^{3}-43 x^{2}+18 x+40$

ANSWER:
$1,-1,-2,4,-5$
45. $f(x)=x^{5}-x^{4}-23 x^{3}+33 x^{2}+126 x-216$

ANSWER:
2, 3, 3, -3, -4
46. CCSS CRITIQUE Doug and Mika are listing all of the possible rational zeros for $f(x)=4 x^{4}+8 x^{5}+10 x^{2}$ $+3 x+16$. Is either of them correct? Explain your reasoning.

$$
\begin{gathered}
\text { Doug } \\
\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm \frac{1}{2}, \pm \frac{1}{4}
\end{gathered}
$$

$$
\begin{gathered}
\text { Mika } \\
\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}
\end{gathered}
$$

ANSWER:

Sample answer: Doug; the value of q is the leading coefficient, which is 4 , not 8 .
47. CHALLENGE Give a polynomial function that has zeros at and $5+2 \boldsymbol{i}$.
ANSWER:
Sample answer: $f(x)=x^{4}-12 x^{3}+47 x^{2}-38 x-58$
48. REASONING Determine if the following statement is sometimes, always, or never true.
Explain your reasoning. If all of the possible zeros of a polynomial function are integers, then the leading coefficient of the function is 1 or -1 .

ANSWER:
Sample answer: Always; in order for the possible zeros of a polynomial function to be integers, the value of q must be 1 or -1 . Otherwise, the possible zeros could be a fraction. In order for q to be 1 or -1 , the leading coefficient of the polynomial must also be 1 or -1 .
49. OPEN ENDED Write a function that has possible zeros of $\pm 18, \pm 9, \pm 6, \pm 3, \pm 2, \pm 1, \pm \frac{9}{4}$, $\pm \frac{9}{2}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{1}{2}$ and $\pm \frac{1}{4}$.
ANSWER:
Sample answer: $f(x)=4 x^{5}+3 x^{3}+8 x+18$
50. CHALLENGE The roots of $x^{2}+b x+c=0$ are M and N. If $|M-N|=1$, express c in terms of b.

ANSWER:
$c=\frac{b^{2}-1}{4}$
51. WRITING IN MATH Explain the process of using the Rational Zero Theorem to determine the number of possible rational zeros of a function.

ANSWER:

Sample answer: For any polynomial function, the constant term represents p and the leading coefficient represents q. The possible zeros of the function can be found with $\pm \frac{p}{q}$ where the fraction is every combination of factors of p and q. For example, if p is 4 and q is 3 , then $\pm 4, \pm 2, \pm 1, \pm \frac{4}{3}, \pm \frac{2}{3}, \pm \frac{1}{3}$, and $\pm \frac{1}{3}$ are all possible zeros.
52. ALGEBRA Which of the following is a zero of the function $f(x)=12 x^{5}-5 x^{3}+2 x-9$?
A -6
B $-\frac{2}{3}$
C $\frac{3}{8}$
D 1
ANSWER:
D
53. SAT/ACT How many negative real zeros does $f(x)$ $=x^{5}-2 x^{4}-4 x^{3}+4 x^{2}-5 x+6$ have ?
F 5
G 3
H 2
J 1
K 0
ANSWER:
J
54. ALGEBRA For all nonnegative numbers n, let $n=\frac{\sqrt{n}}{2}$. if $n=4$, what is the value of n ?
A 2
B 4
C 16
D 64
ANSWER:
D
55. GRIDDED RESPONSE What is the y-intercept of a line that contains the point $(-1,4)$ and has the same x-intercept as $x+2 y=-3$?
ANSWER:
6
Write a polynomial function of least degree with integral coefficients that has the given zeros.
56. $6,-3, \sqrt{2}$

ANSWER:
$f(x)=x^{4}-3 x^{3}-20 x^{2}+6 x+36$
57. 5, $-1,4 i$

ANSWER:
$f(x)=x^{4}-4 x^{3}+11 x^{2}-64 x-80$
58. $-4,-2, i \sqrt{2}$

ANSWER:
$f(x)=x^{4}+6 x^{3}+10 x^{2}+12 x+16$
Given a polynomial and one of its factors, find the remaining factors of the polynomial.
59. $x^{4}+5 x^{3}+5 x^{2}-5 x-6 ; x+3$

ANSWER:
$(x-1)(x+2)(x+1)$
60. $a^{4}-2 a^{3}-17 a^{2}+18 a+72 ; a-3$

ANSWER:

$(a+3)(a-4)(a+2)$
61. $x^{4}+x^{3}-11 x^{2}+x-12 ; x+i$

ANSWER:
$(x-3)(x+4)(x-i)$
62. BRIDGES The supporting cables of the Golden Gate Bridge approximate the shape of a parabola. The parabola can be modeled by the quadratic function $y=0.00012 x^{2}+6$, where x represents the distance from the axis of symmetry and y represents the height of the cables. The related quadratic equation is $0.00012 x^{2}+6=0$.
a. Calculate the value of the discriminate.
b. What does the discriminate tell you about the supporting cables of the Golden Gate Bridge?

ANSWER:

a. -0.00288
b. Sample answer: This means that the cables do not touch the floor of the bridge, since the graph does not intersect the x-axis and the roots are imaginary.
63. RIDES An amusement park ride carries riders to the top of a 225 -foot tower. The riders then free-fall in their seats until they reach 30 feet above the ground.
a. Use the formula $h(t)=-16 t^{2}+h_{0}$, where the time t is in seconds and the initial height h_{0} is in feet, to find how long the riders are in free-fall.
b. Suppose the designer of the ride wants the riders to experience free-fall for 5 seconds before stopping 30 feet above the ground. What should be the height of the tower?
ANSWER:
a. about 3.5 s
b. 430 ft

Simplify.

64. $(x-4)(x+3)$

ANSWER:
$x^{2}-x-12$
65. $3 x\left(x^{2}+4\right)$

ANSWER:
$3 x^{3}+12 x$

5-8 Rational Zero Theorem

66. $x^{2}(x-2)(x+1)$

ANSWER:
$x^{4}-x^{3}-2 x^{2}$
Find each value if $f(x)=6 x+2$ and $g(x)=-4 x^{2}$.
67.f(5)

ANSWER:
32
68. $g(-3)$

ANSWER:
-36
69. $f(3 c)$

ANSWER:
$18 c+2$

