Simplify each expression.

1. $\cot \theta \sec \theta$

ANSWER:

$\csc \theta$
2. $\frac{1-\cos ^{2} \theta}{\sin ^{2} \theta}$

ANSWER:
1
3. $\frac{1}{\cos \theta}-\frac{\sin ^{2} \theta}{\cos \theta}$

ANSWER:
$\cos \theta$
4. $\cos \left(\frac{\pi}{2}-\theta\right) \csc \theta$

ANSWER:
1
5. HISTORY In 1861, the United States 34 -star flag was adopted. For this flag, $\tan \theta=\frac{31.5}{51}$. Find $\sin \theta$.

ANSWER:
$\frac{31.5 \sqrt{3593.25}}{3593.25}$
Find the value of each expression.
6. $\sin \theta$, if $\cos \theta=\frac{3}{5} ; 0^{\circ}<\theta<90^{\circ}$

ANSWER:
$\frac{4}{5}$
7. $\csc \theta$, if $\cot \theta=\frac{1}{2} ; 270^{\circ}<\theta<360^{\circ}$

ANSWER:
$-\frac{\sqrt{5}}{2}$
8. $\tan \theta$, if $\sec \theta=\frac{4}{3} ; 0^{\circ}<\theta<90^{\circ}$

ANSWER:
$\frac{\sqrt{7}}{3}$
9. MULTIPLE CHOICE Which of the following is equivalent to $\frac{\cos \theta}{1-\sin ^{2} \theta}$?
A. $\cos \theta$
B. $\csc \theta$
C. $\tan \theta$
D. $\sec \theta$

ANSWER:

D
10. AMUSEMENT PARKS Suppose a child on a merry-go-round is seated on an outside horse. The diameter of the merry-go-round is 16 meters. The angle of inclination is represented by the equation, $\tan \theta=\frac{v^{2}}{g R^{\prime}}$ where R is the radius of the circular path, v is the speed in meters per second, and g is 9.8 meters per second squared.
a. If the sine of the angle of inclination of the child is
$\frac{1}{5}$, what is the angle of inclination made by the child?
b. What is the velocity of the merry-go-round?
c. If the speed of the merry-go-round is 3.6 meters per second, what is the value of the angle of inclination of a rider?

ANSWER:
a. about 11.5°
b. about $4 \mathrm{~m} / \mathrm{s}$
c. about 9.4°

Mid-Chapter Quiz: Lessons 13-1 through 13-3

Verify that each of the following is an identity.

11. $\cot ^{2} \theta+1=\frac{\cot \theta}{\cos \theta \cdot \sin \theta}$

ANSWER:

$$
\begin{aligned}
\cot ^{2} \theta+1 & =\frac{\cot \theta}{\cos \theta \cdot \sin \theta} \\
\csc ^{2} \theta & =\frac{\cos \theta}{\cos \theta \cdot \sin \theta \cdot \sin \theta} \\
\csc ^{2} \theta & =\frac{1}{\sin ^{2} \theta} \\
\csc ^{2} \theta & =\csc ^{2} \theta
\end{aligned}
$$

12. $\frac{\cos \theta \csc \theta}{\cot \theta}=1$

ANSWER:

$$
\begin{aligned}
& \frac{\cos \theta \csc \theta}{\cot \theta} \stackrel{?}{=} 1 \\
& \frac{\cos \theta}{\sin \theta} \cdot \tan \theta \stackrel{?}{=} 1 \\
& \frac{\cos \theta}{\sin \theta} \cdot \frac{\sin \theta}{\cos \theta} \stackrel{?}{=} 1 \\
& 1=1 \sqrt{ }
\end{aligned}
$$

13. $\frac{\sin \theta \tan \theta}{1-\cos \theta}=(1+\cos \theta) \sec \theta$

ANSWER:

$$
\begin{aligned}
& \frac{\sin \theta \tan \theta}{1-\cos \theta} \stackrel{?}{=}(1+\cos \theta) \sec \theta \\
& \frac{\sin \theta\left(\frac{\sin \theta}{\cos \theta}\right)}{1-\cos \theta} \stackrel{?}{=}(1+\cos \theta) \frac{1}{\cos \theta} \\
& \frac{\frac{\sin ^{2} \theta}{\cos \theta}}{1-\cos \theta} \stackrel{?}{=} \frac{1}{\cos \theta}+1
\end{aligned}
$$

$$
\frac{\sin ^{2} \theta}{\cos \theta} \cdot \frac{1}{1-\cos \theta} \stackrel{?}{=} \frac{1}{\cos \theta}+1
$$

$$
\frac{\sin ^{2} \theta}{\cos \theta(1-\cos \theta)} \stackrel{?}{=} \frac{1}{\cos \theta}+1
$$

$$
\frac{1-\cos ^{2} \theta}{\cos \theta(1-\cos \theta)} \stackrel{?}{=} \frac{1}{\cos \theta}+1
$$

$$
\frac{(1-\cos \theta)(1+\cos \theta)}{\cos \theta(1-\cos \theta)} \stackrel{?}{=} \frac{1}{\cos \theta}+1
$$

$$
\frac{1+\cos \theta}{\cos \theta} \stackrel{?}{=} \frac{1}{\cos \theta}+1
$$

$$
\frac{1}{\cos \theta}+1=\frac{1}{\cos \theta}+1 \sqrt{ }
$$

14. $\tan \theta(1-\sin \theta)=\frac{\cos \theta \sin \theta}{1+\sin \theta}$

ANSWER:

$$
\begin{aligned}
& \tan \theta(1-\sin \theta) \stackrel{?}{=} \frac{\cos \theta \sin \theta}{1+\sin \theta} \\
& \tan \theta(1-\sin \theta) \stackrel{?}{=} \frac{\cos \theta \sin \theta}{1+\sin \theta} \cdot \frac{1-\sin \theta}{1-\sin \theta} \\
& \tan \theta(1-\sin \theta) \stackrel{?}{=} \frac{\cos \theta \sin \theta(1-\sin \theta)}{1-\sin ^{2} \theta} \\
& \tan \theta(1-\sin \theta) \stackrel{?}{\stackrel{?}{\cos \theta \sin \theta(1-\sin \theta)}} \frac{\cos ^{2} \theta}{(\cos } \\
& \tan \theta(1-\sin \theta) \stackrel{?}{=} \frac{\sin \theta(1-\sin \theta)}{\cos \theta} \\
& \tan \theta(1-\sin \theta) \stackrel{?}{=} \frac{\sin \theta}{\cos \theta} \cdot(1-\sin \theta) \\
& \tan \theta(1-\sin \theta)=\tan \theta(1-\sin \theta) \sqrt{2}
\end{aligned}
$$

15. COMPUTER The front of a computer monitor is usually measured along the diagonal of the screen as shown below.
a. Find h.
b. Using the diagram shown, show that

$$
\cot \theta=\frac{\cos \theta}{\sin \theta} .
$$

ANSWER:

a. $15^{2}=12^{2}+h^{2} ; 225=144+h^{2} ; 81=h^{2} ; h=9$
b. $\cot \theta=\frac{12}{9} ; \frac{\cos \theta}{\sin \theta}=\frac{\frac{12}{15}}{\frac{9}{15}}=\frac{12}{9}$, so $\frac{12}{9}=\frac{12}{9}$

Verify that each of the following is an identity.
16. $\tan ^{2} \theta+1 \stackrel{?}{=} \frac{\tan \theta}{\cos \theta \cdot \sin \theta}$

ANSWER:

$$
\begin{aligned}
\tan ^{2} \theta+1 & =\frac{\tan \theta}{\cos \theta \cdot \sin \theta} \\
\sec ^{2} \theta & =\frac{\tan \theta}{\cos \theta \cdot \sin \theta} \\
\sec ^{2} \theta & =\frac{\frac{\sin \theta}{\cos \theta}}{\cos \theta \cdot \sin \theta} \\
\sec ^{2} \theta & =\frac{\sin \theta}{\cos ^{2} \theta \cdot \sin \theta} \\
\sec ^{2} \theta & =\frac{1}{\cos ^{2} \theta} \\
\sec ^{2} \theta & =\sec ^{2} \theta
\end{aligned}
$$

17. $\frac{\sin \theta \cdot \sec \theta}{\sec \theta-1} \stackrel{?}{=}(\sec \theta+1) \cot \theta$

ANSWER:

$$
\begin{aligned}
& \frac{\sin \theta \cdot \sec \theta}{\sec \theta-1}=(\sec \theta+1) \cot \theta \\
& \frac{\sec \theta+1}{\sec \theta+1} \cdot \frac{\sin \theta \cdot \sec \theta}{\sec \theta-1}=(\sec \theta+1) \cot \theta \\
& \frac{\sin \theta \cdot \sec \theta(\sec \theta+1)}{\sec ^{2} \theta-1}=(\sec \theta+1) \cot \theta \\
& \frac{\sin \theta \cdot \frac{1}{\cos \theta}(\sec \theta+1)}{\tan ^{2} \theta}=(\sec \theta+1) \cot \theta \\
& \frac{\frac{\sin \theta}{\cos \theta}(\sec \theta+1)}{\tan ^{2} \theta}=(\sec \theta+1) \cot \theta \\
& \frac{\tan \theta(\sec \theta+1)}{\tan ^{2} \theta}=(\sec \theta+1) \cot \theta \\
& \frac{(\sec \theta+1)}{\tan \theta}=(\sec \theta+1) \cot \theta \\
& (\sec \theta+1) \frac{1}{\tan \theta} \stackrel{?}{=}(\sec \theta+1) \cot \theta \\
& (\sec \theta+1) \cot \theta=(\sec \theta+1) \cot \theta \checkmark
\end{aligned}
$$

Mid-Chapter Quiz: Lessons 13-1 through 13-3

18. $\sin ^{2} \theta \cdot \tan ^{2} \theta \stackrel{?}{=} \tan ^{2} \theta-\sin ^{2} \theta$

ANSWER:

$$
\begin{aligned}
& \sin ^{2} \theta \cdot \tan ^{2} \theta=\frac{?}{\tan ^{2} \theta}-\sin ^{2} \theta \\
& \sin ^{2} \theta \cdot \tan ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta
\end{aligned}
$$

$$
\sin ^{2} \theta \cdot \tan ^{2} \theta=\frac{\sin ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta}
$$

$$
\sin ^{2} \theta \cdot \tan ^{2} \theta=\frac{? \sin ^{2} \theta\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta}
$$

$$
\sin ^{2} \theta \cdot \tan ^{2} \theta=\frac{\sin ^{2} \theta\left(\sin ^{2} \theta\right)}{\cos ^{2} \theta}
$$

$$
\sin ^{2} \theta \cdot \tan ^{2} \theta=\frac{?}{=} \sin ^{2} \theta \frac{\sin ^{2} \theta}{\cos ^{2} \theta}
$$

$$
\sin ^{2} \theta \cdot \tan ^{2} \theta=\sin ^{2} \theta \tan ^{2} \theta
$$

19. $\cot \theta(1-\cos \theta)=\frac{?}{=\cos \theta \cdot \sin \theta} \frac{1+\cos \theta}{}$

ANSWER:

$$
\begin{aligned}
& \cot \theta(1-\cos \theta) \stackrel{?}{=} \frac{\cos \theta \cdot \sin \theta}{1+\cos \theta} \\
& \cot \theta(1-\cos \theta)=\frac{? \cos \theta \cdot \sin \theta}{1+\cos \theta} \cdot \frac{1-\cos \theta}{1-\cos \theta} \\
& \cot \theta(1-\cos \theta)=\frac{?}{?} \frac{\cos \theta \cdot \sin \theta(1-\cos \theta)}{1-\cos ^{2} \theta} \\
& \cot \theta(1-\cos \theta)=\frac{? \cos \theta \cdot \sin \theta(1-\cos \theta)}{\sin ^{2} \theta} \\
& \cot \theta(1-\cos \theta)=\frac{? ~ \cos \theta \cdot(1-\cos \theta)}{\sin \theta} \\
& \cot \theta(1-\cos \theta)=\frac{?}{\cos \theta}(1-\cos \theta) \\
& \cot \theta(1-\cos \theta)=\cot \theta(1-\cos \theta)^{r}
\end{aligned}
$$

Find the exact value of each expression.
20. $\cos 105^{\circ}$

ANSWER:

$\frac{\sqrt{2}-\sqrt{6}}{4}$
21. $\sin \left(-135^{\circ}\right)$

ANSWER:
$-\frac{\sqrt{2}}{2}$
22. $\tan 15^{\circ}$

ANSWER:
$2-\sqrt{3}$
23. $\cot 75^{\circ}$

ANSWER:
$2-\sqrt{3}$
24. MULTIPLE CHOICE What is the exact value of $\cos \frac{5 \pi}{12} ?$

F $\sqrt{2}$
G $\frac{\sqrt{6}+\sqrt{2}}{2}$
H $\frac{\sqrt{6}-\sqrt{2}}{4}$
J $\frac{\sqrt{6}+\sqrt{2}}{4}$
ANSWER:
H
25. Verify that $\cos 30^{\circ} \cos \theta+\sin 30^{\circ} \sin \theta=\sin 60^{\circ}$ $\cos \theta+\cos 60^{\circ} \sin \theta$ is an identity

ANSWER:

$\cos 30^{\circ} \cdot \cos \theta+\sin 30^{\circ} \cdot \sin \theta=\sin 60^{\circ} \cdot \cos \theta+\cos 60^{\circ} \cdot \sin \theta$ $\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta=\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta \checkmark$

