1. Find the *y*-intercept, the equation of the axis of symmetry, and the *x*-coordinate of the vertex for $f(x) = 2x^2 + 8x - 3$. Then graph the function by making a table of values.

ANSWER:

y-intercept = -3; axis of symmetry x = -2; *x*-coordinate of vertex = -2

2. Determine whether $f(x) = 5 - x^2 + 2x$ has a maximum or a minimum value. Then find this maximum or minimum value and state the domain and range of the function.

ANSWER:

max.; 6; D = {all real numbers}; R = { $f(x)|f(x) \le 6$ }

- 3. **MULTIPLE CHOICE** For which equation is the axis of symmetry x = 5?
 - $\mathbf{A} f(x) = x^2 5x + 3$

B $f(x) = x^2 - 10x + 7$

C
$$f(x) = x^2 + 10x - 3$$

$$\mathbf{D} f(x) = x^2 + 5x + 2$$

ANSWER: B 4. **PHYSICAL SCIENCE** From 4 feet above the ground, Maya throws a ball upward with a velocity of 18 feet per second. The height h(t) of the ball t seconds after Maya throws the ball is given by $h(t) = -16t^2 + 18t + 4$. Find the maximum height reached by the ball and the time that this height is reached.

ANSWER:

9.0625 feet at 0.5625 seconds

5. Solve $3x^2 - 17x + 5 = 0$ by graphing. If exact roots cannot be found, state the consecutive integers between which the roots are located.

ANSWER:

between 0 and 1, and between 5 and 6

Use a quadratic equation to find two real numbers that satisfy each situation, or show that no such numbers exist.

6. Their sum is 15, and their product is 36.

ANSWER:

3 and 12

7. Their sum is 7, and their product is 15.

ANSWER:

Let x, be the first number. Then 7 - x is the other number. x(7 - x) = 15; $-x^2 + 7x - 15 = 0$. Since the graph of the related function does not intersect the xaxis, this equation has no real solutions. Therefore, no such numbers exist.

- 8. MULTIPLE CHOICE Using the graph of the function $f(x) = x^2 + 6x 7$, what are the solutions to the equation $x^2 + 6x 7 = 0$?
 - **F** −1, 6
 - **G** 1, -6
 - $H_{-1, 7}$
 - **J** 1, −7

ANSWER:

J

9. **BASEBALL** A baseball is hit upward with a velocity of 40 feet per second. Ignoring the height of the baseball player, how long does it take for the ball to fall to the ground? Use the formula $h(t) = v_0 t$ –

 $16t^2$ where h(t) is the height of an object in feet, v_0 is the object's initial velocity in feet per second, and *t* is the time in seconds.

ANSWER:

2.5 seconds

Solve each equation by factoring.

10. $x^2 - x - 12 = 0$

ANSWER: {-3, 4}

11. $3x^2 + 7x + 2 = 0$

ANSWER:

12. $x^2 - 2x - 15 = 0$ ANSWER: $\{-3, 5\}$ 13. $2x^2 + 5x - 3 = 0$ ANSWER:

 $\left\{-3,\frac{1}{2}\right\}$

14. Write a quadratic equation in standard form with roots -6 and $\frac{1}{4}$.

ANSWER: $0 = 4x^2 + 23x - 6$

15. **TRIANGLES** Find the dimensions of a triangle if the base is $\frac{2}{3}$ the measure of the height and the area is 12 square centimeters.

ANSWER: base = 4 cm, height = 6 cm

Mid-Chapter Quiz: Lessons 4-1 through 4-4

16. **PATIO** Eli is putting a cement slab in his backyard. The original slab was going to have dimensions of 8 feet by 6 feet. He decided to make the slab larger by adding *x* feet to each side. The area of the new slab is 120 square feet.

	6 ft	
x	8 ft	
	X	

a. Write a quadratic equation that represents the area of the new slab.

b. Find the new dimensions of the slab.

ANSWER: a. $120 = x^2 + 14x + 48$

b. 12 feet by 10 feet

Simplify.

17. √-81

ANSWER: 9i

18. $\sqrt{-25x^4y^5}$

ANSWER: $5x^2y^2i\sqrt{y}$

19. (15-3i) - (4-12i)

ANSWER:

11 + 9i

20. i³⁷

ANSWER:

i

21. (5-3i)(5+3i)

ANSWER: 34

22. $\frac{3-i}{2+5i}$

ANSWER: $\frac{1}{29} - \frac{17}{29}i$

23. The impedance in one part of a series circuit is 3 + 4i ohms and the impedance in another part of the circuit is 6 - 7i ohms. Add these complex numbers to find the total impedance in the circuit.

ANSWER: 9 – 3j ohms