Mid-Chapter Quiz: Lessons 4-1 through 4-4

1. Find the y-intercept, the equation of the axis of symmetry, and the x-coordinate of the vertex for $f(x)$ $=2 x^{2}+8 x-3$. Then graph the function by making a table of values.

ANSWER:
y-intercept $=-3$; axis of symmetry $x=-2 ; x-$ coordinate of vertex $=-2$

2. Determine whether $f(x)=5-x^{2}+2 x$ has a maximum or a minimum value. Then find this maximum or minimum value and state the domain and range of the function.

ANSWER:

max.; $6 ; \mathrm{D}=\{$ all real numbers $\}$;
$\mathrm{R}=\{f(x) \mid f(x) \leq 6\}$
3. MULTIPLE CHOICE For which equation is the axis of symmetry $x=5$?

A $f(x)=x^{2}-5 x+3$
B $f(x)=x^{2}-10 x+7$
C $f(x)=x^{2}+10 x-3$
D $f(x)=x^{2}+5 x+2$

ANSWER:
B
4. PHYSICAL SCIENCE From 4 feet above the ground, Maya throws a ball upward with a velocity of 18 feet per second. The height $h(t)$ of the ball t seconds after Maya throws the ball is given by $h(t)=$ $-16 t^{2}+18 t+4$. Find the maximum height reached by the ball and the time that this height is reached.

ANSWER:
9.0625 feet at 0.5625 seconds
5. Solve $3 x^{2}-17 x+5=0$ by graphing. If exact roots cannot be found, state the consecutive integers between which the roots are located.

ANSWER:
between 0 and 1 , and between 5 and 6

Use a quadratic equation to find two real numbers that satisfy each situation, or show that no such numbers exist.
6. Their sum is 15 , and their product is 36 .

ANSWER:

3 and 12
7. Their sum is 7 , and their product is 15 .

ANSWER:

Let x, be the first number. Then $7-x$ is the other number. $x(7-x)=15 ;-x^{2}+7 x-15=0$. Since the graph of the related function does not intersect the x axis, this equation has no real solutions. Therefore, no such numbers exist.

Mid-Chapter Quiz: Lessons 4-1 through 4-4

8. MULTIPLE CHOICE Using the graph of the function $f(x)=x^{2}+6 x-7$, what are the solutions to the equation $x^{2}+6 x-7=0$?

F-1, 6
G $1,-6$
H-1, 7
J 1, -7

ANSWER:
J
9. BASEBALL A baseball is hit upward with a velocity of 40 feet per second. Ignoring the height of the baseball player, how long does it take for the ball to fall to the ground? Use the formula $h(t)=v_{0} t-$ $16 t^{2}$ where $h(t)$ is the height of an object in feet, v_{0} is the object's initial velocity in feet per second, and t is the time in seconds.

ANSWER:
2.5 seconds

Solve each equation by factoring.

10. $x^{2}-x-12=0$

ANSWER:
$\{-3,4\}$
11. $3 x^{2}+7 x+2=0$

ANSWER:
$\left\{-2,-\frac{1}{3}\right\}$
12. $x^{2}-2 x-15=0$

ANSWER:
$\{-3,5\}$
13. $2 x^{2}+5 x-3=0$

ANSWER:
$\left\{-3, \frac{1}{2}\right\}$
14. Write a quadratic equation in standard form with roots -6 and $\frac{1}{4}$.

ANSWER:
$0=4 x^{2}+23 x-6$
15. TRIANGLES Find the dimensions of a triangle if the base is $\frac{2}{3}$ the measure of the height and the area is 12 square centimeters.

ANSWER:
base $=4 \mathrm{~cm}$, height $=6 \mathrm{~cm}$

Mid-Chapter Quiz: Lessons 4-1 through 4-4

16. PATIO Eli is putting a cement slab in his backyard. The original slab was going to have dimensions of 8 feet by 6 feet. He decided to make the slab larger by adding x feet to each side. The area of the new slab is 120 square feet.

a. Write a quadratic equation that represents the area of the new slab.
b. Find the new dimensions of the slab.

ANSWER:
a. $120=x^{2}+14 x+48$
b. 12 feet by 10 feet

Simplify.
17. $\sqrt{-81}$

ANSWER:
$9 i$
18. $\sqrt{-25 x^{4} y^{5}}$

ANSWER:
$5 x^{2} y^{2} i \sqrt{y}$
19. $(15-3 i)-(4-12 i)$

ANSWER:
$11+9 i$
20. i^{37}

ANSWER:
i
21. $(5-3 i)(5+3 i)$

ANSWER:
34
22. $\frac{3-i}{2+5 i}$

ANSWER:
$\frac{1}{29}-\frac{17}{29} i$
23. The impedance in one part of a series circuit is $3+4 j$ ohms and the impedance in another part of the circuit is $6-7 j$ ohms. Add these complex numbers to find the total impedance in the circuit.

ANSWER:
$9-3 j$ ohms

