State whether each sentence is true orfalse. If false, replace the underlined term to make a true sentence.

1. The coefficient of the first term of a polynomial in standard form is called the leading coefficient.
ANSWER:
true
2. Polynomials that cannot be factored are called polynomials in one variable.
ANSWER:
false; prime polynomials
3. A prime polynomial has a degree that is one less than the original polynomial.

ANSWER:

false; depressed polynomial
4. A point on the graph of a function where no other nearby point has a greater y-coordinate is called a relative maximum.
ANSWER:
true
5. A polynomial function is a continuous function that can be described by a polynomial equation in one variable.

ANSWER:
true
6. To simplify an expression containing powers means to rewrite the expression without parentheses or negative exponents.
ANSWER:
true
7. Synthetic division is a shortcut method for dividing a polynomial by a binomial.

ANSWER:
true;
8. The relative maximum and relative minimum of a function are often referred to as end behavior.
ANSWER:
false; turning points
9. When a polynomial is divided by one of its binomial factors, the quotient is called a depressed polynomial.

ANSWER:

true
10. $\left(x^{3}\right)^{2}+3 x^{3}-8=0$ is a power function.

ANSWER:
false; written in quadratic form
Simplify. Assume that no variable equals 0.
11. $\frac{14 x^{4} y}{2 x^{3} y^{5}}$

ANSWER:
$\frac{7 x}{y^{4}}$
12. $3 t(t n-5)$

ANSWER:
$3 t^{2} n-15 t$
13. $\left(4 r^{2}+3 r-1\right)-\left(3 r^{2}-5 r+4\right)$

ANSWER:
$r^{2}+8 r-5$
14. $\left(x^{4}\right)^{3}$

ANSWER:
x^{12}
15. $(m+p)\left(m^{2}-2 m p+p^{2}\right)$

ANSWER:
$m^{3}-m^{2} p-m p^{2}+p^{3}$
16. $3 b(2 b-1)+2 b(b+3)$

ANSWER:
$8 b^{2}+3 b$

Simplify.
17. $\frac{12 x^{4} y^{5}+8 x^{3} y^{7}-16 x^{2} y^{6}}{4 x y^{5}}$

ANSWER:
$3 x^{3}+2 x^{2} y^{2}-4 x y$
18. $\left(6 y^{3}+13 y^{2}-10 y-24\right) \div(y+2)$

ANSWER:
$6 y^{2}+y-12$
19. $\left(a^{4}+5 a^{3}+2 a^{2}-6 a+4\right)(a+2)^{-1}$

ANSWER:
$a^{3}+3 a^{2}-4 a+2$
Simplify.
20. $\left(4 a^{6}-5 a^{4}+3 a^{2}-a\right) \div(2 a+1)$

ANSWER:
$2 a^{5}-a^{4}-2 a^{3}+a^{2}+a-1+\frac{1}{2 a+1}$
21. GEOMETRY The volume of the rectangular prism is $3 x^{3}+11 x^{2}-114 x-80$ cubic units. What is the area of the base?

ANSWER:
$x^{2}+3 x-40$ units 2
State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why.
22. $5 x^{6}-3 x^{4}+x^{3}-9 x^{2}+1$

ANSWER:
degree: 6 ; leading coefficient: 5
23. $6 x y^{2}-x y+y^{2}$

ANSWER:
This is not a polynomial in one variable. It has two variables, x and y.
24. $12 x^{3}-5 x^{4}+6 x^{8}-3 x-3$

ANSWER:
degree: 8 ; leading coefficient: 6
Find $p(-2)$ and $p(x+h)$ for each function.
25. $p(x)=x^{2}+2 x-3$

ANSWER:
$p(-2)=-3 ; p(x+h)=x^{2}+2 x h+h^{2}+2 x+2 h-3$
26. $p(x)=3 x^{2}-x$

ANSWER:
$p(-2)=14 ; p(x+h)=3 x^{2}+6 x h+3 h^{2}-x-h$
27. $p(x)=3-5 x^{2}+x^{3}$

ANSWER:
$p(-2)=-25 ; p(x+h)=3-5 x^{2}-10 x h-5 h^{2}+x^{3}+$ $3 h x^{2}+3 h^{2} x+h^{3}$

Complete each of the following.
a. Graph each function by making a table of values.
b. Determine the consecutive integer values of x between which each real zero is located.
c. Estimate the x-coordinates at which the relative maxima and minima occur.
28. $h(x)=x^{3}-4 x^{2}-7 x+10$

ANSWER:
a.

b. The zeros are at $-2,1$, and 5 .
c. rel. max: $x \approx-0.69$; rel. $\min : x \approx 3.36$
29. $g(x)=4 x^{4}-21 x^{2}+5$

ANSWER:
a.

b. between -3 and -2 , between -1 and 0 , between 0 and 1 , between 2 and 3
c. rel. max: $x \approx 0$; rel. min: $x \approx 1.62$ and $x \approx-1.62$
30. $f(x)=x^{3}-3 x^{2}-4 x+12$

ANSWER:

a.

b. zeros at $-2,2$, and 3
c. rel. max: $x \approx-0.53$; rel. max: $x \approx 2.53$
31. $h(x)=4 x^{3}-6 x^{2}+1$

ANSWER:
a.

b. between -1 and 0 , between 0 and 1 , and between 1 and 2
c. rel. max: $x \approx 0$; rel. min: $x \approx 1$
32. $p(x)=x^{5}-x^{4}+1$

ANSWER:
a.

b. between -1 and 0
c. rel. max: $x=0$; rel. min: $x \approx 0.80$
33. BUSINESS Milo tracked the monthly profits for his sports store business for the first six months of the year. They can be modeled by using the following six points: $(1,675),(2,950),(3,550),(4,250),(5,600)$, and $(6,400)$. How many turning points would the graph of a polynomial function through these points have? Describe them.

ANSWER:
2 relative maxima and 1 relative minima

Factor completely. If the polynomial is not factorable, write prime .

34. $a^{4}-16$

ANSWER:
$(a-2)(a+2)\left(a^{2}+4\right)$
35. $x^{3}+6 y^{3}$

ANSWER:
prime
36. $54 x^{3} y-16 y^{4}$

ANSWER:
$2 y(3 x-2 y)\left(9 x^{2}+6 x y+4 y^{2}\right)$
37. $6 a y+4 b y-2 c y+3 a z+2 b z-c z$

ANSWER:
$(2 y+z)(3 a+2 b-c)$

Solve each equation.

38. $x^{3}+2 x^{2}-35 x=0$

ANSWER:
$-7,0,5$
39. $8 x^{4}-10 x^{2}+3=0$

ANSWER:
$\pm \frac{\sqrt{3}}{2}, \pm \frac{\sqrt{2}}{2}$
40. GEOMETRY The volume of the prism is 315 cubic inches. Find the value of x and the length, height, and width.

ANSWER:
$x=6$, length $=9$ in., height $=5 \mathrm{in}$., width $=7 \mathrm{in}$.
Use synthetic substitution to find $f(-2)$ and $f(4)$ for each function.
41. $f(x)=x^{2}-3$

ANSWER:
$f(-2)=1 ; f(4)=13$
42. $f(x)=x^{2}-5 x+4$

ANSWER:
$f(-2)=18 ; f(4)=0$
43. $f(x)=x^{3}+4 x^{2}-3 x+2$

ANSWER:
$f(-2)=16 ; f(4)=118$
44. $f(x)=2 x^{4}-3 x^{3}+1$

ANSWER:
$f(-2)=57 ; f(4)=321$

Given a polynomial and one of its factors, find the remaining factors of the polynomial.
45. $3 x^{3}+20 x^{2}+23 x-10 ; x+5$

ANSWER:
$x+2$ and $3 x-1$
46. $2 x^{3}+11 x^{2}+17 x+5 ; 2 x+5$

ANSWER:
2 and $x^{2}+3 x+1$
47. $x^{3}+2 x^{2}-23 x-60 ; x-5$

ANSWER:
$x+3, x+4$
State the possible number of positive real zeros, negative real zeros, and imaginary zeros of each function.
48. $f(x)=-2 x^{3}+11 x^{2}-3 x+2$

ANSWER:
positive real zeros: 3 or 1
negative real zeros: 0
imaginary zeros: 2 or 0
49. $f(x)=-4 x^{4}-2 x^{3}-12 x^{2}-x-23$

ANSWER:
positive real zeros: 0
negative real zeros: 4,2 , or 0
imaginary zeros: 4,2 , or 0
50. $f(x)=x^{6}-5 x^{3}+x^{2}+x-6$

ANSWER:
positive real zeros: 3 or 1 negative real zeros: 1 imaginary zeros: 4 or 2
51. $f(x)=-2 x^{5}+4 x^{4}+x^{2}-3$

ANSWER:
positive real zeros: 2 or 0 negative real zeros: 1 imaginary zeros: 4 or 2
52. $f(x)=-2 x^{6}+4 x^{4}+x^{2}-3 x-3$

ANSWER:
positive real zeros: 2 or 0
negative real zeros: 2 or 0
imaginary zeros: 6,4 , or 2
Find all of the zeros of each function.
53. $f(x)=x^{3}+4 x^{2}+3 x-2$

ANSWER:
$-2,-1 \pm \sqrt{2}$
54. $f(x)=4 x^{3}+4 x^{2}-x-1$

ANSWER:
$-1,-\frac{1}{2}, \frac{1}{2}$
55. $f(x)=x^{3}+2 x^{2}+4 x+8$

ANSWER:
$-2, \pm 2 i$
56. STORAGE Melissa is building a storage box that is shaped like a rectangular prism. It will have a volume of 96 cubic feet. Using the diagram below, find the dimensions of the box.

ANSWER:

width $=4 \mathrm{ft}$,
length $=12 \mathrm{ft}$, height $=2 \mathrm{ft}$

