Choose a word or term from the list above that best completes each statement or phrase.

1. A function of the form $f(x) = b^x$ where b > 1 is a(n) _____ function.

SOLUTION:

A function of the form $f(x) = b^x$ where b > 1 is a(n) exponential growth function.

2. In $x = b^y$, the variable y is called the _____ of x.

SOLUTION:

In $x = b^y$, the variable y is called the <u>logarithm</u> of x.

3. Base 10 logarithms are called _____

SOLUTION:

Base 10 logarithms are called <u>common logarithms</u>.

4. A(n) ______ is an equation in which variables occur as exponents.

SOLUTION:

A(n) <u>exponential equation</u> is an equation in which variables occur as exponents.

5. The ______ allows you to write equivalent logarithmic expressions that have different bases.

SOLUTION:

The <u>change of base formula</u> allows you to write equivalent logarithmic expressions that have different bases.

6. The base of the exponential function, A(t) = a(1 - r)t, 1 - r is called the _____.

SOLUTION:

The base of the exponential function, A(t) = a(1 - r)t, 1 - r is called the <u>decay factor</u>.

7. The function $y = \log_b x$, where b > 0 and $b \neq 1$, is

called a(n) _____.

SOLUTION:

The function $y = \log_b x$, where b > 0 and $b \neq 1$, is called a(n) <u>logarithmic function</u>.

8. An exponential function with base e is called the

SOLUTION:

An exponential function with base *e* is called the <u>natural base exponential function</u>.

9. The logarithm with base e is called the

SOLUTION:

The logarithm with base e is called the <u>natural</u> <u>logarithm</u>.

10. The number *e* is referred to as the _____

SOLUTION:

The number *e* is referred to as the <u>natural base</u>.

Graph each function. State the domain and range.

 $11.f(x) = 3^{x}$

SOLUTION:

The function is defined for all values of *x*. Therefore, the domain is set of all real numbers. The value of f(x) tends to ∞ as *x* tends to ∞ . The value of f(x) tends to 0 as *x* tends to $-\infty$. Therefore, the range of the function is $\{f(x) | f(x) > 0\}$.

Study Guide and Review - Chapter 7

 $12.f(x) = -5(2)^x$

SOLUTION:

The function is defined for all values of *x*. Therefore, the domain is set of all real numbers. The value of f(x) tends to ∞ as *x* tends to ∞ . The value of f(x) tends to 0 as *x* tends to $-\infty$.

Therefore, the range of the function is $\{f(x) | f(x) < 0\}$.

$$13.f(x) = 3(4)^x - 6$$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.

The value of f(x) tends to ∞ as x tends to ∞ .

The value of f(x) tends to -6 as x tends to $-\infty$.

Therefore, the range of the function is $\{f(x) | f(x) > -6\}$.

$$14.f(x) = 3^{2x} + 5$$

SOLUTION:

The function is defined for all values of *x*. Therefore, the domain is set of all real numbers. The value of f(x) tends to ∞ as *x* tends to ∞ . The value of f(x) tends to 5 as *x* tends to $-\infty$. Therefore, the range of the function is $\{f(x) | f(x) > 5\}$.

15.
$$f(x) = 3\left(\frac{1}{4}\right)^{x+3} - 1$$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.

The value of f(x) tends to ∞ as x tends to $-\infty$. The value of f(x) tends to -1 as x tends to ∞ . Therefore, the range of the function is $\{f(x) | f(x) > -1\}$.

16.
$$f(x) = \frac{3}{5} \left(\frac{2}{3}\right)^{x-2} + 3$$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.

The value of f(x) tends to ∞ as x tends to $-\infty$. The value of f(x) tends to 3 as x tends to ∞ . Therefore, the range of the function is $\{f(x) | f(x) > 3\}$.

17. **POPULATION** A city with a population of 120,000 decreases at a rate of 3% annually.

a. Write the function that represents this situation.**b.** What will the population be in 10 years?

SOLUTION:

a. Exponential decay with a constant percent increase over specific time periods is modeled by $f(x) = a(1-r)^x$.

Substitute 120,000 for *a* and 0.03 for *r*.

$$f(x) = 120000(1 - 0.03)^{x}$$
$$f(x) = 120000(0.97)^{x}$$

b. Substitute 10 for *x* and evaluate.

$$f(10) = 120000(0.97)^{10} \approx 88491$$

The population will be about 88,491.

Solve each equation or inequality.

18.
$$16^{x} = \frac{1}{64}$$

SOLUTION:
 $16^{x} = \frac{1}{64}$
 $(2^{4})^{x} = (\frac{1}{2})^{6}$
 $2^{2x} = 2^{-6}$
 $\log 2^{4x} = \log 2^{-6}$
 $4x \log 2 = -6 \log 2$
 $x = \frac{-6 \log 2}{4 \log 2}$
 $= -\frac{3}{2}$
The solution is $-\frac{3}{2}$.
19. $3^{4x} = 9^{3x+7}$
SOLUTION:

$$3^{4x} = 9^{3x+7}$$

$$3^{4x} = (3^2)^{3x+7}$$

$$3^{4x} = 3^{6x+14}$$

$$\log 3^{4x} = \log 3^{6x+14}$$

$$4x \log 3 = (6x+14) \log 3$$

$$4x = 6x + 14$$

$$2x = -14$$

$$x = -7$$

The solution is -7.

20. $64^{3n} = 8^{2n-3}$ 22. $9^{x-2} > \left(\frac{1}{81}\right)^{x+2}$ SOLUTION: $64^{3n} = 8^{2n-3}$ SOLUTION: $(8^2)^{3n} = 8^{2n-3}$ $9^{x-2} > \left(\frac{1}{81}\right)^{x+2}$ $8^{6n} = 8^{2n-3}$ $9^{x-2} > \left(\frac{1}{9^2}\right)^{x+2}$ $\log 8^{6n} = \log 8^{2n-3}$ $6n\log 8 = (2n-3)\log 8$ $9^{x-2} > \frac{1}{9^{2x+4}}$ 6n = 2n - 3 $9^{x-2} > 9^{-2x-4}$ 4n = -3 $n = -\frac{3}{4}$ $\log 9^{x-2} > \log 9^{-2x-4}$ $(x-2)\log 9 > (-2x-4)\log 9$ x-2 > -2x-4The solution is $-\frac{3}{4}$. 3x > -2 $x > -\frac{2}{3}$ 21. $8^{3-3y} = 256^{4y}$ SOLUTION: $8^{3-3y} = 256^{4y}$ The solution is $\left\{ x \mid x > -\frac{2}{3} \right\}$. $(2^3)^{3-3y} = (2^8)^{4y}$ 23. $27^{3x} \le 9^{2x-1}$ $2^{9-9y} = 2^{32y}$ $\log 2^{9-9y} = \log 2^{32y}$ SOLUTION: $(9-9y)\log 2 = 32y\log 2$ $27^{3x} < 9^{2x-1}$ 9 - 9v = 32v $(3^3)^{3x} \le (3^2)^{2x-1}$ 9 = 41v $3^{9x} < 3^{4x-2}$ $y = \frac{9}{41}$ $\log 3^{9x} \le \log 3^{4x-2}$ $9x\log 3 \le (4x-2)\log 3$ The solution is $\frac{9}{41}$. $9x \leq 4x - 2$ $5x \leq -2$ $x \leq -\frac{2}{5}$

The solution is $\left\{ x \mid x \le -\frac{2}{5} \right\}$.

24. **BACTERIA** A bacteria population started with 5000 bacteria. After 8 hours there were 28,000 in the sample.

a. Write an exponential function that could be used to model the number of bacteria after *x* hours if the number of bacteria changes at the same rate.

b. How many bacteria can be expected in the sample after 32 hours?

SOLUTION:

a. At the beginning of the experiment, the time is 0 hours and there are 5000 bacteria cells. Thus, the *y*-intercept, and the value of *a*, is 5000. When x = 8, the number of bacteria cells is 28,000. Substitute these values into an exponential function to determine the value of *b*.

$$y = ab^{x}$$

$$28000 = 5000b^{8}$$

$$5.6 = b^{8}$$

$$b = \sqrt[8]{5.6}$$

$$\approx 1.240$$

An equation that models the number of bacteria is $y = 5000(1.240)^{x}$.

b. Substitute 32 for *x* and evaluate.

$$y = 5000(1.240)^{32}$$

\$\approx 4880496\$

There will be approximately 4,880,496 bacteria cells after 32 hours.

25. Write
$$\log_2 \frac{1}{16} = -4$$
 in exponential form.

SOLUTION:

$$\log_2 \frac{1}{16} = -4$$
$$\frac{1}{16} = 2^{-4}$$

26. Write
$$10^2 = 100$$
 in logarithmic form.

SOLUTION:

$$10^2 = 100$$

 $\log_{10} 10^2 = \log_{10} 100$
 $2 = \log_{10} 100$

Evaluate each expression.

27. log₄ 256

SOLUTION:

$$\log_4 256 = \log_4 4^4$$

 $= 4 \log_4 4^4$
 $= 4$

28.
$$\log_2 \frac{1}{8}$$

SOLUTION:
 $\log_2 \frac{1}{8} = \log_2 \frac{1}{2^3}$
 $= \log_2 2^{-3}$
 $= -3 \log_2 2$
 $= -3$

Graph each function.

 $29.f(x) = 2\log_{10} x + 4$

SOLUTION:

30.
$$f(x) = \frac{1}{6} \log_{\frac{1}{2}} (x-2)$$

SOLUTION:

Solve each equation or inequality. 31. $\log_4 x = \frac{3}{2}$ SOLUTION: $\log_4 x = \frac{3}{2}$ $x = 4^{\frac{3}{2}}$ $x = (\sqrt{4})^3$ x = 8

The solution is 8.

32. $\log_2 \frac{1}{64} = x$ SOLUTION: $\log_2 \frac{1}{64} = x$ $\log_2 \frac{1}{2^6} = x$ $\log_2 2^{-6} = x$ $-6 \log_2 2 = x$ x = -6

The solution is -6.

33. $\log_4 x < 3$

SOLUTION:

If b > 1, x > 0, and $\log_b x < y$, then $0 < x < b^y$ so

$$log_4 x < 3$$
$$0 < x < 4^3$$
$$0 < x < 64$$

34. $\log_5 x < -3$

SOLUTION:

If b > 1, x > 0, and $\log_b x < y$, then $0 < x < b^y$ so

$$log_{5} x < -3$$

$$0 < x < 5^{-3}$$

$$0 < x < \frac{1}{5^{3}}$$

$$0 < x < \frac{1}{125}$$

35.
$$log_{9} (3x - 1) = log_{9} (4x)$$

SOLUTION: $log_{9}(3x-1) = log_{9}(4x)$ 3x-1 = 4x x = -1

The value of x makes the argument negative. Logarithms are not defined for negative numbers. Therefore, there is no solution. 36. $\log_2(x^2 - 18) = \log_2(-3x)$

SOLUTION:

$$\log_{2} (x^{2} - 18) = \log_{2} (-3x)$$

$$x^{2} - 18 = -3x$$

$$x^{2} + 3x - 18 = 0$$

$$(x + 6)(x - 3) = 0$$

By Zero Product Property:

x + 6 = 0 or x - 3 = 0x = -6 or x = 3

The *x*-value 3 makes the argument negative. Logarithms are not defined for negative numbers. Therefore, the solution is -6.

37.
$$\log_3(3x+4) \le \log_3(x-2)$$

SOLUTION:

$$\log_3 (3x+4) \le \log_3 (x-2)$$
$$3x+4 \le x-2$$
$$2x \le -6$$
$$x \le -3$$

The value of x makes the argument negative. Logarithms are not defined for negative numbers. Therefore, there is no solution. 38. **EARTHQUAKE** The magnitude of an earthquake is measured on a logarithmic scale called the Richter scale. The magnitude *M* is given by $M = \log_{10} x$,

where *x* represents the amplitude of the seismic wave causing ground motion. How many times as great is the amplitude caused by an earthquake with a Richter scale rating of 10 as an aftershock with a Richter scale rating of 7?

SOLUTION:

Substitute 10 and 7 for M and find the value of x.

 $M = \log_{10} x$ $10 = \log_{10} x$ $x = 10^{10}$ $7 = \log_{10} x$ $x = 10^{7}$

The ratio between the amplitude is 10^3 .

Use log₅ 16 ≈ 1.7227 and log₅ 2 ≈ 0.4307 to approximate the value of each expression. 39. log₅ 8

SOLUTION:

$$\log_5 8 = \log_5 \left(\frac{16}{2}\right)$$

$$= \log_5 16 - \log_5 2$$

$$\approx 1.7227 - 0.4307$$

$$\approx 1.2920$$

40. log₅ 64

SOLUTION: $\log_5 64 = \log_5 (16 \cdot 2 \cdot 2)$ $= \log_5 16 + \log_5 2 + \log_5 2$ $\approx 1.7227 + 0.4307 + 0.4307$ ≈ 2.5841

41. log₅ 4 SOLUTION: $\log_{5} 4 = \log_{5} 2^{2}$ $= 2 \log_5 2$ ≈2(0.4307) = 0.861442. $\log_5 \frac{1}{8}$ SOLUTION: $\log_5 \frac{1}{8} = \log_5 \frac{1}{2^3}$ $=\log 2^{-3}$ $= -3 \log_5 2$ ≈ -3(0.4307) = -1.292143. $\log_5 \frac{1}{2}$ SOLUTION: lo

$$g_5 \frac{1}{2} = \log 2^{-1}$$

= -1 log₅ 2
 $\approx -1(0.4307)$
= -0.4307

Solve each equation. Check your solution.

44. $\log_5 x - \log_5 2 = \log_5 15$

SOLUTION:

$$\log_5 x - \log_5 2 = \log_5 15$$

$$\log_5 \frac{x}{2} = \log_5 15$$

$$\frac{x}{2} = 15$$

$$x = 30$$

Substitute 30 for x and check the solution.

$$\log_{5} 30 - \log_{5} 2 = \log_{5} 15$$
$$\log_{5} (15 \cdot 2) - \log_{5} 2 = \log_{5} 15$$
$$\log_{5} 15 + \log_{5} 2 - \log_{5} 2 = \log_{5} 15$$
$$\log_{5} 15 = \log_{5} 15 \checkmark$$

The solution checks.

45.
$$3 \log_4 a = \log_4 27$$

SOLUTION:
 $3 \log_4 a = \log_4 27$
 $\log_4 a^3 = \log_4 3^3$
 $a^3 = 3^3$
 $a = 3$

Substitute 3 for *a* and check the solution.

$$3 \log_4 3 = \log_4 27$$

 $\log_4 3^3 = \log_4 27$
 $\log_4 27 = \log_4 27$
 $27 = 27 \checkmark$

The solution checks.

46. $2\log_3 x + \log_3 3 = \log_3 36$

SOLUTION:

$$2 \log_3 x + \log_3 3 = \log_3 36$$
$$\log_3 x^2 + \log_3 3 = \log_3 36$$
$$\log_3 3x^2 = \log_3 36$$
$$3x^2 = 36$$
$$x^2 = 12$$
$$x = 2\sqrt{3}$$

Substitute $2\sqrt{3}$ for *x* and check the solution.

$$2 \log_3 2\sqrt{3} + \log_3 3 = \log_3 36$$
$$\log_3 (2\sqrt{3})^2 + \log_3 3 = \log_3 36$$
$$\log_3 12 + \log_3 3 = \log_3 36$$
$$\log_3 36 = \log_3 36$$
$$36 = 36\checkmark$$

The solution checks.

47.
$$\log_4 n + \log_4 (n - 4) = \log_4 5$$

SOLUTION:
 $\log_4 n + \log_4 (n - 4) = \log_4 5$
 $\log_4 (n(n - 4)) = \log_4 5$
 $\log_4 (n^2 - 4n) = \log_4 5$
 $n^2 - 4n = 5$
 $n^2 - 4n - 5 = 0$
 $(n - 5)(n + 1) = 0$

By zero Product property:

n-5 = 0 or n+1 = 0n=5 or n=-1

The *x*-value -1 makes the argument negative. Logarithm is not defined for negative numbers. Therefore, the solution is 5. Substitute 5 and -1 for *x* and check the solution.

$$\log_{4} 5 + \log_{4} (5 - 4) = \log_{4} 5$$
$$\log_{4} 5 + \log_{4} 1 = \log_{4} 5$$
$$\log_{4} 5 + 0 = \log_{4} 5$$
$$\log_{4} 5 = \log_{4} 5 \checkmark$$
$$\log_{4} (-1) + \log_{4} (-1 - 4) = \log_{4} 5$$
$$\log_{4} - 1 + \log_{4} - 5 = \log_{4} 5 \checkmark$$

Therefore, the solution is 5.

48. **SOUND** Use the formula $L = 10 \log_{10} R$, where *L* is the loudness of a sound and *R* is the sound's relative intensity, to find out how much louder 20 people talking would be than one person talking. Suppose the sound of one person talking has a relative intensity of 80 decibels.

SOLUTION:

Substitute 80 for *R* and solve for *L*.

 $L = 10 \log_{10} 80$ ≈ 19.03090

If 20 people are talking at a time, the relative intensity of the sound is

20×19.031≈380.62

Subtract the loudness of one person talking.

380.62-19.031≈361.6

Solve each equation or inequality. Round to the nearest ten-thousandth.

49. $3^{x} = 15$

SOLUTION: $3^x = 15$

$$\log 3^{x} = \log 15$$

$$x \log 3 = \log 15$$

$$x = \frac{\log 15}{\log 3}$$

$$\approx 2.4650$$

50.
$$6^{x^2} = 28$$

SOLUTION:

$$6^{x^{2}} = 28$$

$$\log 6^{x^{2}} = \log 28$$

$$x^{2} \log 6 = \log 28$$

$$x^{2} = \frac{\log 28}{\log 6}$$

$$x = \sqrt{\frac{\log 28}{\log 6}}$$

$$\approx \pm 1.3637$$

51. $8^{m+1} = 30$ SOLUTION: $8^{m+1} = 30$ $\log 8^{m+1} = \log 30$ $(m+1)\log 8 = \log 30$ $m+1 = \frac{\log 30}{\log 8}$ $m = \frac{\log 30}{\log 8}$ ≈ 0.6356 52. $12^{r-1} = 7^r$ SOLUTION: $12^{r-1} = 7^r$ $\log 12^{r-1} = \log 7^r$ $(r-1)\log 12 = r\log 7$ $\frac{r-1}{r} = \frac{\log 7}{\log 12}$ $1 - \frac{1}{r} = \frac{\log 7}{\log 12}$ $\frac{1}{r} = 1 - \frac{\log 7}{\log 12}$ $=\frac{\log 12 - \log 7}{\log 12}$ log12 $r = \frac{\log 12}{\log 12 - \log 7}$ ≈ 4.6102 53. $3^{5n} > 24$

$$3^{5n} > 24$$
$$\log 3^{5n} > \log 24$$
$$5n \log 3 > \log 24$$
$$5n > \frac{\log 24}{\log 3}$$
$$n > \frac{1}{5} \cdot \frac{\log 24}{\log 3}$$
$$n > \frac{1}{5} \cdot \frac{\log 24}{\log 3}$$
$$n > 0.5786$$

eSolutions Manual - Powered by Cognero

54.
$$5^{x+2} \le 3^{x}$$

SOLUTION:

$$5^{x+2} \le 3^{x}$$

$$\log 5^{x+2} \le \log 3^{x}$$

$$(x+2)\log 5 \le x\log 3$$

$$\frac{x+2}{x} \le \frac{\log 3}{\log 5}$$

$$1 + \frac{2}{x} \le \frac{\log 3}{\log 5} - 1$$

$$\frac{2}{x} \le \frac{\log 3 - \log 5}{\log 5}$$

$$x \le \frac{2\log 5}{\log 3 - \log 5}$$

$$\le -6.3013$$

55. **SAVINGS** You deposited \$1000 into an account that pays an annual interest rate *r* of 5% compounded

quarterly. Use $A = P\left(1 + \frac{r}{n}\right)^{nr}$.

a. How long will it take until you have \$1500 in your account?

b. How long it will take for your money to double?

SOLUTION:

a. Substitute 1500, 1000, 0.05 and 4 for *A*, *P*, *r* and *n* then solve for *t*.

$$1500 = 1000 \left(1 + \frac{0.05}{4}\right)^{4t}$$
$$1.5 = \left(1 + \frac{0.05}{4}\right)^{4t}$$
$$1.5 = 1.0125^{4t}$$
$$\log 1.5 = \log 1.0125^{4t}$$
$$4t \log 1.0125 = \log 1.5$$
$$t = \frac{1}{4} \cdot \frac{\log 1.5}{\log 1.0125}$$
$$\approx 8.2$$

It will take about 8.2 years.

b. Substitute 2000, 1000, 0.05 and 4 for *A*, *P*, *r* and *n* then solve for *t*.

$$2000 = 1000 \left(1 + \frac{0.05}{4}\right)^{4t}$$
$$2 = \left(1 + \frac{0.05}{4}\right)^{4t}$$
$$2 = 1.0125^{4t}$$
$$\log 2 = \log 1.0125^{4t}$$
$$4t \log 1.0125 = \log 2$$
$$t = \frac{1}{4} \cdot \frac{\log 2}{\log 1.0125}$$
$$\approx 13.9$$

It will take about 13.4 years.

Solve each equation or inequality. Round to the nearest ten-thousandth.

56.
$$4e^x - 11 = 17$$

SOLUTION:
 $4e^x - 11 = 17$
 $4e^x = 28$
 $e^x = 7$
 $\ln e^x = \ln 7$
 $x = \ln 7$
 ≈ 1.9459

57. $2e^{-x} + 1 = 15$

SOLUTION:

$$2e^{-x} + 1 = 15$$

$$2e^{-x} = 14$$

$$e^{-x} = 7$$

$$\ln e^{-x} = \ln 7$$

$$-x = \ln 7$$

$$x = -\ln 7$$

$$x \approx -1.9459$$

58. $\ln 2x = 6$

SOLUTION:

$$\ln 2x = 6$$

$$2x = e^{6}$$

$$x = \frac{e^{6}}{2}$$

$$\approx 201.7144$$

59. $2 + e^x > 9$

SOLUTION: $2 + e^x > 9$

$$e^{x} > 7$$

$$e^{x} > 107$$

$$e^{x} > 107$$

$$x > 1.9459$$

60. $\ln (x + 3)^5 < 5$ SOLUTION: $\ln (x + 3)^5 < 5$ $5 \ln (x + 3) < 5$ $\ln (x + 3) < 1$ $x + 3 < e^1$ $x < e^1 - 3$ x < -0.281761. $e^{-x} > 18$

> SOLUTION: $e^{-x} > 18$ $\ln e^{-x} > \ln 18$ $-x > \ln 18$ $x > -\ln 18$ $x > -\ln 18$ x > -2.8904

62. **SAVINGS** If you deposit \$2000 in an account paying 6.4% interest compounded continuously, how long will it take for your money to triple? Use $A = Pe^{rt}$.

SOLUTION:

Substitute 6000, 2000 and 0.064 for *A*, *P* and *r* in the equation $A = Pe^{rt}$ then solve for *t*.

$$6000 = 2000e^{0.064t}$$

$$3 = e^{0.064t}$$

$$\ln 3 = \ln e^{0.064t}$$

$$0.064t = \ln 3$$

$$t = \frac{\ln 3}{0.064}$$

$$\approx 17.2$$

It will take about 17.2 years.

63. **CARS** Abe bought a used car for \$2500. It is expected to depreciate at a rate of 25% per year. What will be the value of the car in 3 years?

SOLUTION:

Substitute 2500, 3 and 0.25 for *a*, *t* and *r* in the equation $y = a(1-r)^t$ then evaluate.

$$y = a(1-r)^{t}$$

$$y = 2500(1-0.25)^{3}$$

$$= 2500(0.75)^{3}$$

$$\approx 1054.69$$

The value of the car will be about \$1054.69.

64. **BIOLOGY** For a certain strain of bacteria, *k* is

0.728 when *t* is measured in days. Using the formula $y = ae^{kt}$, how long will it take 10 bacteria to increase to 675 bacteria?

SOLUTION:

Substitute 0.728, 10 and 675 for *k*, *a* and *y* in the equation $y = ae^{kt}$ then solve for *t*.

$$y = ae^{kt}$$

$$675 = 10e^{0.728t}$$

$$67.5 = e^{0.728t}$$

$$\ln 67.5 = \ln e^{0.728t}$$

$$0.728t = \ln 67.5$$

$$t = \frac{\ln 67.5}{0.728}$$

$$\approx 5.8$$

It will take about 5.8 days.

65. **POPULATION** The population of a city 20 years ago was 24,330. Since then, the population has increased at a steady rate each year. If the population is currently 55,250, find the annual rate of growth for this city.

SOLUTION:

Substitute 24330, 20 and 55250 for *y*, *t* and *a* in the equation $y = ae^{kt}$ then solve for *k*.

$$y = ae^{kt}$$

$$55250 = 24330e^{k20}$$

$$e^{k20} = \frac{55250}{24330}$$

$$20k = \ln\left(\frac{55250}{24330}\right)$$

$$k = \frac{\ln\left(\frac{55250}{24330}\right)}{20}$$

$$\approx 0.041$$

The annual rate of growth for this city is about 0.041 or about 4.1%.