Choose a word or term from the list above that best completes each statement or phrase.

1. A function of the form $f(x)=b^{x}$ where $b>1$ is $\mathrm{a}(\mathrm{n})$
\qquad function.

SOLUTION:

A function of the form $f(x)=b^{x}$ where $b>1$ is $\mathrm{a}(\mathrm{n})$ exponential growth function.
2. In $x=b^{y}$, the variable y is called the
\qquad of x.

SOLUTION:
In $x=b^{y}$, the variable y is called the logarithm of x.
3. Base 10 logarithms are called \qquad .

SOLUTION:
Base 10 logarithms are called common logarithms
4. A(n) \qquad is an equation in which variables occur as exponents.

SOLUTION:
$\mathrm{A}(\mathrm{n})$ exponential equation is an equation in which variables occur as exponents.
5. The \qquad allows you to write equivalent logarithmic expressions that have different bases.

SOLUTION:

The change of base formula allows you to write equivalent logarithmic expressions that have different bases.
6. The base of the exponential function, $A(t)=a(1-r) t$, $1-r$ is called the \qquad _.

SOLUTION:

The base of the exponential function, $A(t)=a(1-r) t$, $1-r$ is called the decay factor.
7. The function $y=\log _{b} x$, where $b>0$ and $b \neq 1$, is called a(n) \qquad _.

SOLUTION:

The function $y=\log _{b} x$, where $b>0$ and $b \neq 1$, is called $\mathrm{a}(\mathrm{n}) \xrightarrow{\text { logarithmic function }}$
8. An exponential function with base e is called the
\qquad _.

SOLUTION:

An exponential function with base e is called the _natural base exponential function .
9. The logarithm with base e is called the
\qquad _.

SOLUTION:

The logarithm with base e is called the natural logarithm_.
10. The number e is referred to as the \qquad .

SOLUTION:

The number e is referred to as the natural base .

Graph each function. State the domain and range.

11. $f(x)=3^{x}$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.
The value of $f(x)$ tends to ∞ as x tends to ∞.
The value of $f(x)$ tends to 0 as x tends to $-\infty$. Therefore, the range of the function is $\{f(x) \mid f(x)>$ $0\}$.
12. $f(x)=-5(2)^{x}$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.
The value of $f(x)$ tends to ∞ as x tends to ∞.
The value of $f(x)$ tends to 0 as x tends to $-\infty$.
Therefore, the range of the function is $\{f(x) \mid f(x)<$ $0\}$.
13. $f(x)=3(4)^{x}-6$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.
The value of $f(x)$ tends to ∞ as x tends to ∞. The value of $f(x)$ tends to -6 as x tends to $-\infty$. Therefore, the range of the function is $\{f(x) \mid f(x)>-$ $6\}$.
14. $f(x)=3^{2 x}+5$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.
The value of $f(x)$ tends to ∞ as x tends to ∞.
The value of $f(x)$ tends to 5 as x tends to $-\infty$.
Therefore, the range of the function is $\{f(x) \mid f(x)>$ $5\}$.
15. $f(x)=3\left(\frac{1}{4}\right)^{x+3}-1$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.
The value of $f(x)$ tends to ∞ as x tends to $-\infty$.
The value of $f(x)$ tends to -1 as x tends to ∞.
Therefore, the range of the function is $\{f(x) \mid f(x)>-$ $1\}$.
16. $f(x)=\frac{3}{5}\left(\frac{2}{3}\right)^{x-2}+3$

SOLUTION:

The function is defined for all values of x. Therefore, the domain is set of all real numbers.
The value of $f(x)$ tends to ∞ as x tends to $-\infty$.
The value of $f(x)$ tends to 3 as x tends to ∞.
Therefore, the range of the function is $\{f(x) \mid f(x)>$ 3\}.
17. POPULATION A city with a population of 120,000 decreases at a rate of 3% annually.
a. Write the function that represents this situation.
b. What will the population be in 10 years?

SOLUTION:

a. Exponential decay with a constant percent increase over specific time periods is modeled by $f(x)$ $=a(1-r)^{x}$.
Substitute 120,000 for a and 0.03 for r.

$$
\begin{aligned}
& f(x)=120000(1-0.03)^{x} \\
& f(x)=120000(0.97)^{x}
\end{aligned}
$$

b. Substitute 10 for x and evaluate.

$$
\begin{aligned}
f(10) & =120000(0.97)^{10} \\
& \approx 88491
\end{aligned}
$$

The population will be about 88,491 .

Solve each equation or inequality.
18. $16^{x}=\frac{1}{64}$

SOLUTION:

$$
\begin{aligned}
16^{x} & =\frac{1}{64} \\
\left(2^{4}\right)^{x} & =\left(\frac{1}{2}\right)^{6} \\
2^{2 x} & =2^{-6}
\end{aligned}
$$

$$
\log 2^{4 x}=\log 2^{-6}
$$

$$
4 x \log 2=-6 \log 2
$$

$$
x=\frac{-6 \log 2}{4 \log 2}
$$

$$
=-\frac{3}{2}
$$

The solution is $-\frac{3}{2}$.
19. $3^{4 x}=9^{3 x+7}$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& 3^{4 x}=9^{3 x+7} \\
& 3^{4 x}=\left(3^{2}\right)^{3 x+7} \\
& 3^{4 x}=3^{6 x+14} \\
& \log 3^{4 x}=\log 3^{6 x+14} \\
& 4 x \log 3=(6 x+14) \log 3 \\
& 4 x=6 x+14 \\
& 2 x=-14 \\
& x=-7
\end{aligned}
$$

The solution is -7 .
20. $64^{3 n}=8^{2 n-3}$

SOLUTION:

$$
64^{3 n}=8^{2 n-3}
$$

$$
\left(8^{2}\right)^{3 n}=8^{2 n-3}
$$

$$
8^{6 n}=8^{2 n-3}
$$

$$
\log 8^{6 n}=\log 8^{2 n-3}
$$

$$
6 n \log 8=(2 n-3) \log 8
$$

$$
6 n=2 n-3
$$

$$
4 n=-3
$$

$$
n=-\frac{3}{4}
$$

The solution is $-\frac{3}{4}$.
21. $8^{3-3 y}=256^{4 y}$

SOLUTION:

$$
\begin{aligned}
8^{3-3 y} & =256^{4 y} \\
\left(2^{3}\right)^{3-3 y} & =\left(2^{8}\right)^{4 y} \\
2^{9-9 y} & =2^{32 y} \\
\log 2^{9-9 y} & =\log 2^{32 y} \\
(9-9 y) \log 2 & =32 y \log 2 \\
9-9 y & =32 y \\
9 & =41 y \\
y & =\frac{9}{41}
\end{aligned}
$$

The solution is $\frac{9}{41}$.
22. $9^{x-2}>\left(\frac{1}{81}\right)^{x+2}$

SOLUTION:

$$
\begin{aligned}
9^{x-2} & >\left(\frac{1}{81}\right)^{x+2} \\
9^{x-2} & >\left(\frac{1}{9^{2}}\right)^{x+2} \\
9^{x-2} & >\frac{1}{9^{2 x+4}} \\
9^{x-2} & >9^{-2 x-4} \\
\log 9^{x-2} & >\log 9^{-2 x-4} \\
(x-2) \log 9 & >(-2 x-4) \log 9 \\
x-2 & >-2 x-4 \\
3 x & >-2 \\
x & >-\frac{2}{3}
\end{aligned}
$$

The solution is $\left\{x \left\lvert\, x>-\frac{2}{3}\right.\right\}$.
23. $27^{3 x} \leq 9^{2 x-1}$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& 27^{3 x} \leq 9^{2 x-1} \\
&\left(3^{3}\right)^{3 x} \leq\left(3^{2}\right)^{2 x-1} \\
& 3^{9 x} \leq 3^{4 x-2} \\
& \log 3^{9 x} \leq \log 3^{4 x-2} \\
& 9 x \log 3 \leq(4 x-2) \log 3 \\
& 9 x \leq 4 x-2 \\
& 5 x \leq-2 \\
& x \leq-\frac{2}{5}
\end{aligned}
$$

The solution is $\left\{x \left\lvert\, x \leq-\frac{2}{5}\right.\right\}$.
24. BACTERIA A bacteria population started with 5000 bacteria. After 8 hours there were 28,000 in the sample.
a. Write an exponential function that could be used to model the number of bacteria after x hours if the number of bacteria changes at the same rate.
b. How many bacteria can be expected in the sample after 32 hours?

SOLUTION:

a. At the beginning of the experiment, the time is 0 hours and there are 5000 bacteria cells. Thus, the y intercept, and the value of a, is 5000 . When $x=8$, the number of bacteria cells is 28,000 . Substitute these values into an exponential function to determine the value of b.

$$
\begin{aligned}
y & =a b^{x} \\
28000 & =5000 b^{8} \\
5.6 & =b^{8} \\
b & =\sqrt[8]{5.6} \\
& \approx 1.240
\end{aligned}
$$

An equation that models the number of bacteria is y $=5000(1.240)^{x}$.
b. Substitute 32 for x and evaluate.

$$
\begin{aligned}
y & =5000(1.240)^{32} \\
& \approx 4880496
\end{aligned}
$$

There will be approximately 4,880,496 bacteria cells after 32 hours.
25. Write $\log _{2} \frac{1}{16}=-4$ in exponential form.

SOLUTION:

$$
\log _{2} \frac{1}{16}=-4
$$

$$
\frac{1}{16}=2^{-4}
$$

26. Write $10^{2}=100$ in logarithmic form.

SOLUTION:

$$
\begin{aligned}
10^{2} & =100 \\
\log _{10} 10^{2} & =\log _{10} 100 \\
2 & =\log _{10} 100
\end{aligned}
$$

Evaluate each expression.

27. $\log _{4} 256$

SOLUTION:

$$
\begin{aligned}
\log _{4} 256 & =\log _{4} 4^{4} \\
& =4 \log _{4} 4 \\
& =4
\end{aligned}
$$

28. $\log _{2} \frac{1}{8}$

SOLUTION:
$\begin{aligned} \log _{2} \frac{1}{8} & =\log _{2} \frac{1}{2^{3}} \\ & =\log _{2} 2^{-3} \\ & =-3 \log _{2} 2 \\ & =-3\end{aligned}$

Graph each function.

29. $f(x)=2 \log _{10} x+4$

SOLUTION:

30. $f(x)=\frac{1}{6} \log _{\frac{1}{3}}(x-2)$

SOLUTION:

Solve each equation or inequality.
31. $\log _{4} x=\frac{3}{2}$

SOLUTION:
$\log _{4} x=\frac{3}{2}$

$$
\begin{aligned}
x & =4^{\frac{3}{2}} \\
x & =(\sqrt{4})^{3} \\
x & =8
\end{aligned}
$$

The solution is 8 .
32. $\log _{2} \frac{1}{64}=x$

SOLUTION:

$$
\begin{aligned}
\log _{2} \frac{1}{64} & =x \\
\log _{2} \frac{1}{2^{6}} & =x \\
\log _{2} 2^{-6} & =x \\
-6 \log _{2} 2 & =x \\
x & =-6
\end{aligned}
$$

The solution is -6 .
33. $\log _{4} x<3$

SOLUTION:

If $b>1, x>0$, and $\log _{b} x<y$, then $0<x<b^{y}$ so

$$
\begin{aligned}
\log _{4} x & <3 \\
0 & <x<4^{3} \\
0 & <x<64
\end{aligned}
$$

34. $\log _{5} x<-3$

SOLUTION:

If $b>1, x>0$, and $\log _{b} x<y$, then $0<x<b^{y}$ so

$$
\begin{aligned}
\log _{5} x & <-3 \\
0 & <x<5^{-3} \\
0 & <x<\frac{1}{5^{3}} \\
0 & <x<\frac{1}{125}
\end{aligned}
$$

35. $\log _{9}(3 x-1)=\log _{9}(4 x)$

SOLUTION:

$$
\begin{aligned}
\log _{9}(3 x-1) & =\log _{9}(4 x) \\
3 x-1 & =4 x \\
x & =-1
\end{aligned}
$$

The value of x makes the argument negative. Logarithms are not defined for negative numbers. Therefore, there is no solution.
36. $\log _{2}\left(x^{2}-18\right)=\log _{2}(-3 x)$

SOLUTION:

$$
\begin{aligned}
\log _{2}\left(x^{2}-18\right) & =\log _{2}(-3 x) \\
x^{2}-18 & =-3 x \\
x^{2}+3 x-18 & =0 \\
(x+6)(x-3) & =0
\end{aligned}
$$

By Zero Product Property:

$$
\begin{array}{lll}
x+6=0 \text { or } & x-3=0 \\
x=-6 & \text { or } & x=3
\end{array}
$$

The x-value 3 makes the argument negative. Logarithms are not defined for negative numbers. Therefore, the solution is -6 .
37. $\log _{3}(3 x+4) \leq \log _{3}(x-2)$

SOLUTION:

$$
\begin{aligned}
\log _{3}(3 x+4) & \leq \log _{3}(x-2) \\
3 x+4 & \leq x-2 \\
2 x & \leq-6 \\
x & \leq-3
\end{aligned}
$$

The value of x makes the argument negative. Logarithms are not defined for negative numbers. Therefore, there is no solution.
38. EARTHQUAKE The magnitude of an earthquake is measured on a logarithmic scale called the Richter scale. The magnitude M is given by $M=\log _{10} x$, where x represents the amplitude of the seismic wave causing ground motion. How many times as great is the amplitude caused by an earthquake with a Richter scale rating of 10 as an aftershock with a Richter scale rating of 7 ?

SOLUTION:

Substitute 10 and 7 for M and find the value of x.

$$
\begin{aligned}
& M=\log _{10} x \\
& 10=\log _{10} x \\
& x=10^{10} \\
& 7=\log _{10} x \\
& x=10^{7}
\end{aligned}
$$

The ratio between the amplitude is 10^{3}.
Use $\log _{5} 16 \approx 1.7227$ and $\log _{5} 2 \approx 0.4307$ to approximate the value of each expression.
39. $\log _{5} 8$

SOLUTION:

$$
\begin{aligned}
\log _{5} 8 & =\log _{5}\left(\frac{16}{2}\right) \\
& =\log _{5} 16-\log _{5} 2 \\
& \approx 1.7227-0.4307 \\
& \approx 1.2920
\end{aligned}
$$

40. $\log _{5} 64$

SOLUTION:

$$
\begin{aligned}
\log _{5} 64 & =\log _{5}(16 \cdot 2 \cdot 2) \\
& =\log _{5} 16+\log _{5} 2+\log _{5} 2 \\
& \approx 1.7227+0.4307+0.4307 \\
& \approx 2.5841
\end{aligned}
$$

41. $\log _{5} 4$

SOLUTION:

$$
\begin{aligned}
\log _{5} 4 & =\log _{5} 2^{2} \\
& =2 \log _{5} 2 \\
& \approx 2(0.4307) \\
& =0.8614
\end{aligned}
$$

42. $\log _{5} \frac{1}{8}$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
\log _{5} \frac{1}{8} & =\log _{5} \frac{1}{2^{3}} \\
& =\log 2^{-3} \\
& =-3 \log _{5} 2 \\
& \approx-3(0.4307) \\
& =-1.2921
\end{aligned}
\end{aligned}
$$

43. $\log _{5} \frac{1}{2}$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{aligned}
\log _{5} \frac{1}{2} & =\log 2^{-1} \\
& =-1 \log _{5} 2 \\
& \approx-1(0.4307) \\
& =-0.4307
\end{aligned}
\end{aligned}
$$

Solve each equation. Check your solution.

44. $\log _{5} x-\log _{5} 2=\log _{5} 15$

SOLUTION:

$$
\begin{aligned}
\log _{5} x-\log _{5} 2 & =\log _{5} 15 \\
\log _{5} \frac{x}{2} & =\log _{5} 15 \\
\frac{x}{2} & =15 \\
x & =30
\end{aligned}
$$

Substitute 30 for x and check the solution.

$$
\begin{aligned}
\log _{5} 30-\log _{5} 2 & =\log _{5} 15 \\
\log _{5}(15 \cdot 2)-\log _{5} 2 & =\log _{5} 15 \\
\log _{5} 15+\log _{5} 2-\log _{5} 2 & =\log _{5} 15 \\
\log _{5} 15 & =\log _{5} 15
\end{aligned}
$$

The solution checks.
45. $3 \log _{4} a=\log _{4} 27$

SOLUTION:

$$
\begin{aligned}
3 \log _{4} a & =\log _{4} 27 \\
\log _{4} a^{3} & =\log _{4} 3^{3} \\
a^{3} & =3^{3} \\
a & =3
\end{aligned}
$$

Substitute 3 for a and check the solution.

$$
\begin{aligned}
3 \log _{4} 3 & =\log _{4} 27 \\
\log _{4} 3^{3} & =\log _{4} 27 \\
\log _{4} 27 & =\log _{4} 27 \\
27 & =27
\end{aligned}
$$

The solution checks.

Study Guide and Review - Chapter 7

46. $2 \log _{3} x+\log _{3} 3=\log _{3} 36$

SOLUTION:

$$
\begin{aligned}
2 \log _{3} x+\log _{3} 3 & =\log _{3} 36 \\
\log _{3} x^{2}+\log _{3} 3 & =\log _{3} 36 \\
\log _{3} 3 x^{2} & =\log _{3} 36 \\
3 x^{2} & =36 \\
x^{2} & =12 \\
x & =2 \sqrt{3}
\end{aligned}
$$

Substitute $2 \sqrt{3}$ for x and check the solution.

$$
\begin{aligned}
2 \log _{3} 2 \sqrt{3}+\log _{3} 3 & =\log _{3} 36 \\
\log _{3}(2 \sqrt{3})^{2}+\log _{3} 3 & =\log _{3} 36 \\
\log _{3} 12+\log _{3} 3 & =\log _{3} 36 \\
\log _{3} 36 & =\log _{3} 36 \\
36 & =36
\end{aligned}
$$

The solution checks.
47. $\log _{4} n+\log _{4}(n-4)=\log _{4} 5$

SOLUTION:

$$
\begin{aligned}
\log _{4} n+\log _{4}(n-4) & =\log _{4} 5 \\
\log _{4}(n(n-4)) & =\log _{4} 5 \\
\log _{4}\left(n^{2}-4 n\right) & =\log _{4} 5 \\
n^{2}-4 n & =5 \\
n^{2}-4 n-5 & =0 \\
(n-5)(n+1) & =0
\end{aligned}
$$

By zero Product property:

$$
\begin{array}{lll}
n-5=0 \text { or } & n+1=0 \\
n=5 & \text { or } & n=-1
\end{array}
$$

The x-value -1 makes the argument negative.
Logarithm is not defined for negative numbers. Therefore, the solution is 5 .
Substitute 5 and -1 for x and check the solution.

$$
\begin{aligned}
\log _{4} 5+\log _{4}(5-4) & =\log _{4} 5 \\
\log _{4} 5+\log _{4} 1 & =\log _{4} 5 \\
\log _{4} 5+0 & =\log _{4} 5 \\
\log _{4} 5 & =\log _{4} 5 \\
\log _{4}(-1)+\log _{4}(-1-4) & =\log _{4} 5 \\
\log _{4}-1+\log _{4}-5 & =\log _{4} 5 x
\end{aligned}
$$

Therefore, the solution is 5 .
48. SOUND Use the formula $L=10 \log _{10} R$, where L is the loudness of a sound and R is the sound's relative intensity, to find out how much louder 20 people talking would be than one person talking. Suppose the sound of one person talking has a relative intensity of 80 decibels.

SOLUTION:

Substitute 80 for R and solve for L.

$$
\begin{aligned}
L & =10 \log _{10} 80 \\
& \approx 19.03090
\end{aligned}
$$

If 20 people are talking at a time, the relative intensity of the sound is

$$
20 \times 19.031 \approx 380.62
$$

Subtract the loudness of one person talking.

$$
380.62-19.031 \approx 361.6
$$

Solve each equation or inequality. Round to the nearest ten-thousandth.
49. $3^{x}=15$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& 3^{x}=15 \\
& \log 3^{x}=\log 15 \\
& x \log 3=\log 15 \\
& x=\frac{\log 15}{\log 3} \\
& \approx 2.4650
\end{aligned}
$$

50. $6^{x^{2}}=28$

SOLUTION:

$$
\begin{aligned}
6^{x^{2}} & =28 \\
\log 6^{x^{2}} & =\log 28 \\
x^{2} \log 6 & =\log 28 \\
x^{2} & =\frac{\log 28}{\log 6} \\
x & =\sqrt{\frac{\log 28}{\log 6}} \\
& \approx \pm 1.3637
\end{aligned}
$$

51. $8^{m+1}=30$

SOLUTION:

$$
\begin{aligned}
8^{m+1} & =30 \\
\log 8^{m+1} & =\log 30 \\
(m+1) \log 8 & =\log 30 \\
m+1 & =\frac{\log 30}{\log 8} \\
m & =\frac{\log 30}{\log 8}-1 \\
& \approx 0.6356
\end{aligned}
$$

52. $12^{r-1}=7^{r}$

SOLUTION:

$$
\begin{aligned}
12^{r-1} & =7^{r} \\
\log 12^{r-1} & =\log 7^{r} \\
(r-1) \log 12 & =r \log 7 \\
\frac{r-1}{r} & =\frac{\log 7}{\log 12} \\
1-\frac{1}{r} & =\frac{\log 7}{\log 12} \\
\frac{1}{r} & =1-\frac{\log 7}{\log 12} \\
& =\frac{\log 12-\log 7}{\log 12} \\
r & =\frac{\log 12}{\log 12-\log 7} \\
& \approx 4.6102
\end{aligned}
$$

53. $3^{5 n}>24$

SOLUTION:

$$
3^{5 n}>24
$$

$\log 3^{5 n}>\log 24$
$5 n \log 3>\log 24$
$5 n>\frac{\log 24}{\log 3}$
$n>\frac{1}{5} \cdot \frac{\log 24}{\log 3}$
$n>0.5786$
54. $5^{x+2} \leq 3^{x}$

SOLUTION:

$$
\begin{aligned}
& 5^{x+2} \leq 3^{x} \\
& \log 5^{x+2} \leq \log 3^{x} \\
&(x+2) \log 5 \leq x \log 3 \\
& \frac{x+2}{x} \leq \frac{\log 3}{\log 5} \\
& 1+\frac{2}{x} \leq \frac{\log 3}{\log 5} \\
& \frac{2}{x} \leq \frac{\log 3}{\log 5}-1 \\
& \frac{2}{x} \leq \frac{\log 3-\log 5}{\log 5} \\
& x \leq \frac{2 \log 5}{\log 3-\log 5} \\
& \leq-6.3013
\end{aligned}
$$

55. SAVINGS You deposited $\$ 1000$ into an account that pays an annual interest rate r of 5% compounded quarterly. Use $A=P\left(1+\frac{r}{n}\right)^{n t}$.
a. How long will it take until you have $\$ 1500$ in your account?
b. How long it will take for your money to double?

SOLUTION:

a. Substitute $1500,1000,0.05$ and 4 for A, P, r and n then solve for t.

$$
\begin{aligned}
1500 & =1000\left(1+\frac{0.05}{4}\right)^{4 t} \\
1.5 & =\left(1+\frac{0.05}{4}\right)^{4 t} \\
1.5 & =1.0125^{4 t} \\
\log 1.5 & =\log 1.0125^{4 t} \\
4 t \log 1.0125 & =\log 1.5 \\
t & =\frac{1}{4} \cdot \frac{\log 1.5}{\log 1.0125} \\
& \approx 8.2
\end{aligned}
$$

It will take about 8.2 years.
b. Substitute 2000, 1000, 0.05 and 4 for A, P, r and n then solve for t.

$$
\begin{aligned}
2000 & =1000\left(1+\frac{0.05}{4}\right)^{4 t} \\
2 & =\left(1+\frac{0.05}{4}\right)^{4 t} \\
2 & =1.0125^{4 t} \\
\log 2 & =\log 1.0125^{4 t} \\
4 t \log 1.0125 & =\log 2 \\
t & =\frac{1}{4} \cdot \frac{\log 2}{\log 1.0125} \\
& \approx 13.9
\end{aligned}
$$

It will take about 13.4 years.

Solve each equation or inequality. Round to the nearest ten-thousandth.
56. $4 e^{x}-11=17$

SOLUTION:

$$
\begin{aligned}
4 e^{x}-11 & =17 \\
4 e^{x} & =28 \\
e^{x} & =7 \\
\ln e^{x} & =\ln 7 \\
x & =\ln 7 \\
& \approx 1.9459
\end{aligned}
$$

57. $2 e^{-x}+1=15$

SOLUTION:

$$
\begin{aligned}
2 e^{-x}+1 & =15 \\
2 e^{-x} & =14 \\
e^{-x} & =7 \\
\ln e^{-x} & =\ln 7 \\
-x & =\ln 7 \\
x & =-\ln 7 \\
x & \approx-1.9459
\end{aligned}
$$

58. $\ln 2 x=6$

SOLUTION:

$$
\ln 2 x=6
$$

$$
2 x=e^{6}
$$

$$
x=\frac{e^{6}}{2}
$$

$$
\approx 201.7144
$$

59. $2+e^{x}>9$

SOLUTION:

$$
\begin{aligned}
2+e^{x} & >9 \\
e^{x} & >7 \\
\ln e^{x} & >\ln 7 \\
x & >1.9459
\end{aligned}
$$

60. $\ln (x+3)^{5}<5$

SOLUTION:

$$
\begin{aligned}
\ln (x+3)^{5} & <5 \\
5 \ln (x+3) & <5 \\
\ln (x+3) & <1 \\
x+3 & <e^{1} \\
x & <e^{1}-3 \\
x & <-0.2817
\end{aligned}
$$

61. $e^{-x}>18$

SOLUTION:

$$
e^{-x}>18
$$

$\ln e^{-x}>\ln 18$

$$
-x>\ln 18
$$

$$
x>-\ln 18
$$

$$
x>-2.8904
$$

62. SAVINGS If you deposit $\$ 2000$ in an account paying 6.4\% interest compounded continuously, how long will it take for your money to triple? Use $A=P e^{r t}$.

SOLUTION:

Substitute 6000, 2000 and 0.064 for A, P and r in the equation $A=P e^{r t}$ then solve for t.

$$
\begin{aligned}
6000 & =2000 e^{0.064 t} \\
3 & =e^{0.064 t} \\
\ln 3 & =\ln e^{0.064 t} \\
0.064 t & =\ln 3 \\
t & =\frac{\ln 3}{0.064} \\
& \approx 17.2
\end{aligned}
$$

It will take about 17.2 years.
63. CARS Abe bought a used car for $\$ 2500$. It is expected to depreciate at a rate of 25% per year. What will be the value of the car in 3 years?

SOLUTION:

Substitute 2500, 3 and 0.25 for a, t and r in the equation $y=a(1-r)^{t}$ then evaluate.

$$
\begin{aligned}
y & =a(1-r)^{t} \\
y & =2500(1-0.25)^{3} \\
& =2500(0.75)^{3} \\
& \approx 1054.69
\end{aligned}
$$

The value of the car will be about $\$ 1054.69$.
64. BIOLOGY For a certain strain of bacteria, k is 0.728 when t is measured in days. Using the formula $y=a e^{k t}$, how long will it take 10 bacteria to increase to 675 bacteria?

SOLUTION:

Substitute $0.728,10$ and 675 for k, a and y in the equation $y=a e^{k t}$ then solve for t.

$$
\begin{aligned}
y & =a e^{k t} \\
675 & =10 e^{0.728 t} \\
67.5 & =e^{0.728 t} \\
\ln 67.5 & =\ln e^{0.728 t} \\
0.728 t & =\ln 67.5 \\
t & =\frac{\ln 67.5}{0.728} \\
& \approx 5.8
\end{aligned}
$$

It will take about 5.8 days.
65. POPULATION The population of a city 20 years ago was 24,330 . Since then, the population has increased at a steady rate each year. If the population is currently 55,250 , find the annual rate of growth for this city.

SOLUTION:

Substitute 24330, 20 and 55250 for y, t and a in the equation $y=a e^{k t}$ then solve for k.

$$
\begin{aligned}
y & =a e^{k t} \\
55250 & =24330 e^{k 20} \\
e^{k 20} & =\frac{55250}{24330} \\
20 k & =\ln \left(\frac{55250}{24330}\right) \\
k & =\frac{\ln \left(\frac{55250}{24330}\right)}{20} \\
& \approx 0.041
\end{aligned}
$$

The annual rate of growth for this city is about 0.041 or about 4.1%.

